Ocean Dynamics

, Volume 65, Issue 11, pp 1547–1565 | Cite as

The impact of sea surface currents in wave power potential modeling

  • George ZodiatisEmail author
  • George Galanis
  • George Kallos
  • Andreas Nikolaidis
  • Christina Kalogeri
  • Aristotelis Liakatas
  • Stavros Stylianou
Part of the following topical collections:
  1. Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT)


The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.


Wave modeling Wave energy Sea surface currents Numerical meteo-ocean modeling 


  1. Ardhuin F, Bertotti L, Bidlot J, Cavaleri L, Filipetto V, Lefevre J, Wittmann P (2007) Comparison of wind and wave measurements and models in the Western Mediterranean Sea. Ocean Eng 34(3–4):526–541CrossRefGoogle Scholar
  2. Akpınar A, Kömürcü M (2013) Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Appl Energy 101:502–512CrossRefGoogle Scholar
  3. Arinaga R, Cheung KF (2012) Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renew Energy 39:49–64CrossRefGoogle Scholar
  4. Astitha M, Kallos G, Mihalopoulos N (2005) Analysis of air quality observations with the aid of the source-receptor relationship approach. J Air Waste Manag Assoc 55:523–535CrossRefGoogle Scholar
  5. Aoun NS, Harajli HA, Queffeulou P (2013) Preliminary appraisal of wave power prospects in Lebanon. Renew Energy 53:165–173CrossRefGoogle Scholar
  6. Balis D et al (2006) Optical characteristics of desert dust over the East Mediterranean during summer: a case study. Ann Geophys 24:807–821CrossRefGoogle Scholar
  7. Barbariol F, Benetazzo A, Carniel S, Sclavo M (2013) Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling. Renew Energy 60:462–471CrossRefGoogle Scholar
  8. Belibassakis K, Athanassoulis G (2014) Gerostathis, directional wave spectrum transformation in the presence of strong depth and current inhomogeneities by means of coupled-mode model. Ocean Eng 87:84–96CrossRefGoogle Scholar
  9. Bidlot J, Janssen P, Abdalla S, Hersbach H (2007) A revised formulation of ocean wave dissipation and its model impact. ECMWF Tech. Memo. 509. ECMWF, Reading, United Kingdom, 27pp. available online at:
  10. Bidlot JR (2012) Present status of wave forecasting at ECMWF. Proceedings from the ECMWF Workshop on Ocean Waves, 25–27 June 2012. ECMWF, Reading, United KingdomGoogle Scholar
  11. Bidlot JR (2015) Intercomparison of operational wave forecasting systems against buoys: data from ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM January 2014 to December 2014 European Centre for Medium-range Weather ForecastsGoogle Scholar
  12. Bolaños-Sanchez R, Sanchez-Arcilla A, Cateura J (2007) Evaluation of two atmospheric models for wind–wave modelling in the NW Mediterranean. J Mar Syst 65(1–4):336–353CrossRefGoogle Scholar
  13. Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, edited by N. Heaps, 208 pp., American Geophysical UnionGoogle Scholar
  14. Brito-Melo A, Huckerby J (Eds.) (2010) Annual report 2010: implementing agreement on ocean energy systems. OES-IAGoogle Scholar
  15. Brown JM, Davies AG (2009) Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions. Cont Shelf Res 29:1502–1514CrossRefGoogle Scholar
  16. Chelton DB, Ries JC, Haines BJ, Fu LL, Callahan PS (2001) Satellite altimetry, satellite altimetry and Earth sciences, L.L. Fu and A. Cazenave Ed., Academic PressGoogle Scholar
  17. Chiu F, Huang W, Tiao W (2013) The spatial and temporal characteristics of the wave energy resources around Taiwan. Renew Energy 52:218–221CrossRefGoogle Scholar
  18. Correia P, Lozano S, Chavez R, Loureiro Y, Cantero E, Benito P, Sanz Rodrigo J (2013) Wind Characterization at the Alaiz – Las Balsas experimental wind farm using high-resolution simulations with mesoscale models. Development of a “low cost” methodology that address promoters needs. EWEA-13 proceedings, Vienna, February 2013Google Scholar
  19. Defne Z, Haas K, Fritz H (2009) Wave energy potential along the Atlantic coast of the southeastern USA. Renew Energy 34:2197–2205CrossRefGoogle Scholar
  20. Dobricic S, Pinardi N (2008) An oceanographic three-dimensional variational data assimilation scheme. Ocean Model 22:89–105CrossRefGoogle Scholar
  21. Dykes JD, Wang DW, Book JW (2009) An evaluation of a high-resolution operational wave forecasting system in the Adriatic Sea. J Mar Syst 78(suppl 1):S255–S271CrossRefGoogle Scholar
  22. Emmanouil G, Galanis G, Kallos G (2012) Combination of statistical Kalman filters and data assimilation for improving ocean waves analysis and forecasting. Ocean Model 59–60:11–23CrossRefGoogle Scholar
  23. Falnes J (2007) A review of wave-energy extraction. Mar Struct 20:185–201CrossRefGoogle Scholar
  24. Galanis G, Emmanouil G, Kallos G, Chu PC (2009) A new methodology for the extension of the impact in sea wave assimilation systems. Ocean Dyn 59(3):523–535CrossRefGoogle Scholar
  25. Galanis G, Chu PC, Kallos G (2011) Statistical post processes for the improvement of the results of numerical wave prediction models. A combination of Kolmogorov-Zurbenko and Kalman filters. J Oper Oceanogr 4(1):23–31Google Scholar
  26. Gonçalves M, Martinho P, Soares CG (2014) Wave energy conditions in the western French coast. Renew Energy 62:155–163CrossRefGoogle Scholar
  27. Gunn K, Stock-Williams C (2012) Quantifying the global wave power resource. Renew Energy 44:296–304CrossRefGoogle Scholar
  28. Hashemi MR, Neill (2014) The role of tides in shelf-scale simulations of the wave energy Resource. Renew Energy 69:300–310CrossRefGoogle Scholar
  29. Haus BK (2007) Surface current effects on the fetch limited growth of wave energy. J Geophys Res 112(CO3003):15Google Scholar
  30. Hemer M, Griffin D (2010) The wave energy resource along Australia’s southern margin. J Renew Sustain Energy 2:15. doi: 10.1063/1.3464753 CrossRefGoogle Scholar
  31. Hedges TS (1987) Combinations of waves and currents: an introduction. Proc Inst Civ Eng 82(Part I):567–585CrossRefGoogle Scholar
  32. Huang NE, Chen DT, Tung CC, Smith JR (1972) Interactions between steady non-uniform currents and gravity waves with applications for current measurements. J Phys Ocenogr 2:420–431CrossRefGoogle Scholar
  33. Henfridsson U, Neimane V, Strand K, Kapper R, Bernhoff H, Danielsson O, Leijon M, Sundberg J, Thorburn K, Ericsson K, Bergman K (2007) Wave energy potential in the Baltic Sea and the Danish Part of the North Sea, with reflections on the Skagerrak. Renew Energy 32:2069–2084CrossRefGoogle Scholar
  34. Hughes M, Heap A (2010) National-scale wave energy resource assessment for Australia. Renew Energy 35(8):1783–1791CrossRefGoogle Scholar
  35. Iglesias G, Carballo R (2009) Wave energy resource along the Death Coat (Spain). Renew Energy 34:1963–1975CrossRefGoogle Scholar
  36. Iglesias G, Lopez M, Carballo R, Castro A, Fraguela JA, Frigaard P (2009) Wave energy potential in Galicia (NW Spain). Renew Energy 34:2323–2333CrossRefGoogle Scholar
  37. Iglesias G, Carballo R (2010) Wave energy resource in the Estaca de Bares area (Spain). Renew Energy 35:1574–1584CrossRefGoogle Scholar
  38. Irigoyen U, Cantero E, Correia P, Frías L, Loureiro Y, Lozano S, Pascal E, Sanz Rodrigo J (2011) Navarre virtual wind series: physical mesoscale downscaling wind WAsP. Methodology and validation. EWEC-11 European Wind Energy Conference, Brussels, Belgium, March 2011Google Scholar
  39. Janeiro J, Martins F, Relvas P (2012) Towards the development of an operational tool for oil spills management in the algarve coast. J Coast Conserv 16(4):449–460CrossRefGoogle Scholar
  40. Janssen P (2000) ECMWF wave modeling and satellite altimeter wave data. In D. Halpern (Ed.), Satellites, Oceanogr Soc, pp. 35–36, ElsevierGoogle Scholar
  41. Janssen P (2004) The interaction of ocean waves and wind. University Press, Cambridge, 300pp CrossRefGoogle Scholar
  42. Jonsson IG (1990) Wave–current interactions. In: Le Mehaute B, Hanes DM (eds) The sea, chap 3, vol 9, part A. Wiley, New YorkGoogle Scholar
  43. JoãoTeles M, Pires-Silva AA, Benoit M (2013) Numerical modelling of wave current interactions at a local scale. Ocean ModelGoogle Scholar
  44. Kallos G (1997) The regional weather forecasting system SKIRON. Proceedings, Symposium on Regional Weather Prediction on Parallel Computer Environments, 15–17 October 1997, Athens, Greece, 9 ppGoogle Scholar
  45. Kallos G, Papadopoulos A, Katsafados P, Nickovic S (2005) Trans-Atlantic Saharan dust transport: Model simulation and results. J Geophys Res (111)Google Scholar
  46. Komen G, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P (1994) Dynamics and modelling of ocean waves. Cambridge University PressGoogle Scholar
  47. Korres G, Lascaratos A, Hatziapostolou E, Katsafados P (2002) Towards an ocean forecasting system for the Aegean sea. Glob Atmos Ocean Syst 8(2–3):191–218CrossRefGoogle Scholar
  48. Lenee-Bluhm P, Paasch R, Özkan-Haller T (2011) Characterizing the wave energy resource of the US Pacific Northwest. Renew Energy 36(8):2106–2119CrossRefGoogle Scholar
  49. Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, Kallos G (2008) Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J Wind Eng Ind Aerodyn 96:2348–2362CrossRefGoogle Scholar
  50. Magnusson L, Thorpe A, Bonavita M, Lang S, McNally T, Wedi N (2013) Evaluation of forecasts for hurricane Sandy, Technical Memorandum, No. 699, ECMWFGoogle Scholar
  51. Mellor GL (2003) Users guide for a three-dimensional, primitive equation, numerical ocean model. POMGoogle Scholar
  52. Mellor GL, Yamada T (1982) Development of a turbulent closure model for geophysical fluid problems. Rev Geophys 20:851–875CrossRefGoogle Scholar
  53. Mellor GL (2008) The depth-dependent current and wave interaction equations: a revision. J Phys Oceanogr 38:2587–2596CrossRefGoogle Scholar
  54. Milena M, Poulain P-M, Zodiatis G, Gertman I (2012) On the surface circulation of the Levantine sub-basin derived from Lagrangian drifters and satellite altimetry data. Deep-Sea Res I 65:46–58CrossRefGoogle Scholar
  55. Morim J, Cartwright N, Etemad-Shahidi A, Strauss D, Hemer M (2014) A review of wave energy estimates for nearshore shelf waters off Australia. Int J Mar Energy 7:57–70CrossRefGoogle Scholar
  56. Nickovic S, Kallos G, Papadopoulos A, Kakaliagou O (2001) A model for prediction of desert dust cycle in the atmosphere. J Geophys Res 106(D16):18113–18129CrossRefGoogle Scholar
  57. Papadopoulos A, Katsafados P, Kallos G (2001) Regional weather forecasting for marine application. Global Atmos Ocean Syst 8(2–3):219–237Google Scholar
  58. Papadopoulos A, Katsafados P (2009) Verification of operational weather forecasts from the POSEIDON system across the Eastern Mediterranean. Nat Hazards Earth Syst Sci 9:1299–1306CrossRefGoogle Scholar
  59. Peregrine D (1976) Interaction of water waves and currents. Adv Appl Mech 16:9–117CrossRefGoogle Scholar
  60. Pinardi N, Allen I, De Mey P, Korres G, Lascaratos A, Le Traon PY, Maillard C, Manzella G, Tziavos C (2003) The Mediterranean ocean forecasting system: first phase of implementation (1998–2001). Ann Geophys 21(1):3–20CrossRefGoogle Scholar
  61. Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubartsev V, Dobricic S, Bonaduce A (2015) Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: a retrospective analysis. Prog Oceanogr 132:318–332CrossRefGoogle Scholar
  62. Pontes MT (1998) Assessing the European wave energy resource. Trans Am Meteorol Soc 120:226–231Google Scholar
  63. Radhakrishnan H, Moulitsas I, Hayes D, Zodiatis G, Georgiou G (2012) On improving the operational performance of the Cyprus Coastal Ocean Forecasting System. Geophys Res Abstr 14, EGU2012-13144-1Google Scholar
  64. Radhakrishnan H, Moulitsas I, Hayes D, Zodiatis G, Georgiou G (2011) Development of a parallel code for the Cyprus Coastal Ocean Forecasting System, the future of operational oceanography 2011, Hamburg, GermanyGoogle Scholar
  65. Rusu CL, Soares G (2011) Modelling the wave–current interactions in an offshore basin using the SWAN model. Ocean Eng 38:63–76CrossRefGoogle Scholar
  66. Rusu L, Soares G (2012) Wave energy assessments in the Azores islands. Renew Energy 45:183–196CrossRefGoogle Scholar
  67. Saruwatari A, Ingram D, Cradden L (2013) Wave–current interaction effects on marine energy converters. Ocean Eng 73:106–118CrossRefGoogle Scholar
  68. Soares CG, de Pablo H (2006) Experimental study of the transformation of wave spectra by a uniform current. Ocean Eng 33:293–310CrossRefGoogle Scholar
  69. Siegel S (1956) Non-parametric statistics for the behavioral sciences. McGraw, New YorkGoogle Scholar
  70. Spyrou C, Mitsakou C, Kallos G, Louka P, Vlastou G (2010) An improved limited area model for describing the dust cycle in the atmosphere. J Geophys Res: Atmos 115 (D17)Google Scholar
  71. Stathopoulos C, Kaperoni A, Galanis G, Kallos G (2013) Wind power prediction based on numerical and statistical models. J Wind Energy Ind Aerodyn 112:25–38CrossRefGoogle Scholar
  72. Stopa J, Cheung K, Chen YL (2011) Assessment of wave energy resources in Hawaii. Renew Energy 36(2):554–567CrossRefGoogle Scholar
  73. Tonani M, Pinardi N, Adani N, Bonazzi A, Coppini G, De Dominicis M, Dobricic S, Drudi M, Fabbroni N, Fratianni C, Grandi A, Lyubartsev S, Oddo P, Pettenuzzo D, Pistoia J and Pujol I (2008) The Mediterranean Ocean forecasting system, coastal to global operational oceanography: achievements and challenges. Proceedings of the Fifth International Conference on EuroGOOS 20–22 May 2008, Exeter, UKGoogle Scholar
  74. Varinou M, Kallos G, Kotroni V, Lagouvardos K (2000) The influence of the lateral boundaries and background concentrations on limited area photochemical model simulations. Int J Environ Pollut 14:354–363CrossRefGoogle Scholar
  75. Vicinanza D, Contestabile P, Ferrante V (2013) Wave energy potential in the north-west of Sardinia (Italy). Renew Energy 50:506–521CrossRefGoogle Scholar
  76. van Nieuwkoop JCC, Smith HCM, Smith GH, Johanning L (2013) Wave resource assessment along the Cornish coast (UK) from a 23-year hindcast dataset validated against buoy measurements. Renew Energy 58:1–14CrossRefGoogle Scholar
  77. WAMDIG, The WAM-Development and Implementation Group, Hasselmann S, Hasselmann K, Bauer E, Bertotti L, Cardone CV, Ewing JA, Greenwood JA, Guillaume A, Janssen P, Komen G, Lionello P, Reistad M, Zambresky L (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18(12):1775–1810CrossRefGoogle Scholar
  78. Whitman GB (1974) Linear and non-linear waves. Wiley, New York, 636 p Google Scholar
  79. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83CrossRefGoogle Scholar
  80. Zodiatis G, Lardner R, Georgiou G, Demirov E, Manzella G, Pinardi N (2003) An operational European global ocean observing system for the eastern Mediterranean Levantine basin: the Cyprus coastal ocean forecasting and observing system. Mar Technol Soc J 37(3):115–123CrossRefGoogle Scholar
  81. Zodiatis G, Hayes D. R, Lardner R, Georgiou G. (2008) Sub-regional forecasting and observing system in the Eastern Mediterranean Levantine Basin: the Cyprus Coastal Ocean Forecasting and Observing System (CYCOFOS), CIESM Monographs no. 34 (F. Briand Editor), ISSN 1726–5886, 101–106Google Scholar
  82. Zodiatis G, Galanis G, Nikolaidis A, Kalogeri C, Hayes D, Georgiou G, Chu PC, Kallos G (2014) Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study renewable energy. Renew Energy 69:311–323CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • George Zodiatis
    • 1
    Email author
  • George Galanis
    • 2
  • George Kallos
    • 3
  • Andreas Nikolaidis
    • 1
  • Christina Kalogeri
    • 3
  • Aristotelis Liakatas
    • 2
  • Stavros Stylianou
    • 1
  1. 1.Oceanography CentreUniversity of CyprusNicosiaCyprus
  2. 2.Mathematical Modeling Group, Section of MathematicsHellenic Naval AcademyHatzikiriakionGreece
  3. 3.Department of Physics, Atmospheric Modeling and Weather Forecasting GroupUniversity of AthensAthensGreece

Personalised recommendations