The use of a flow field correction technique for alleviating the North Atlantic cold bias with application to the Kiel Climate Model

Abstract

The North Atlantic cold bias, associated with the misplacement of the North Atlantic Current (NAC) and typically extending from the surface to 1000 m depth, is a common problem in coupled models that compromises model fidelity. We investigate the use of a flow field correction (FFC) to adjust the path of the NAC and alleviate the cold bias. The FFC consists of three steps. First, climatological potential temperature (T) and salinity (S) fields for use with the model are produced using a three-dimensional restoring technique. Second, these T, S fields are used to modify the momentum equations of the ocean model. In the third stage, the correction term is diagnosed to construct a flow-independent correction. Results using the Kiel Climate Model show that the FFC allows the establishment of a northwest corner, substantially alleviating the subsurface cold bias. A cold bias remains at the surface but can be eliminated by additionally correcting the surface freshwater flux, without adjusting the surface heat flux seen by the ocean model. A model version in which only the surface fluxes of heat and freshwater are corrected continues to exhibit the incorrect path of the NAC and a strong subsurface bias. We also show that the bias in the atmospheric circulation is reduced in some corrected model versions. The FFC can be regarded as a way to correct for model error, e.g. associated with the deep water mass pathways and their impact on the large-scale ocean circulation, and unresolved processes such as eddy momentum flux convergence.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    The altimeter products were produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (http://www.aviso.altimetry.fr/duacs/).

  2. 2.

    This is for a model with a surface level of depth 5 m.

  3. 3.

    Another way of putting this would be to say that the introduction of the flow field correction pushes the model from the model state in CTRL towards a state with a collapsed AMOC, despite the fact that the pattern of the surface freshwater flux is basically the same in both experiments. The reason is probably because of the changed flow path at the surface in C-FFC compared to CTRL that can be seen from Figure 1. In C-FFC, the surface flow path passes under the region of largest freshwater input, as can be seen by comparing Fig. 1 with Fig. 6, whereas in CTRL the flow tends to go around the region of largest freshwater input. This means that the surface flow experiences more freshwater input in C-FFC than in CTRL.

References

  1. Ba J, Keenlyside NS, Park W, Latif M, Hawkins E, Ding H (2013) A mechanism for Atlantic multidecadal variability, in the Kiel Climate Model. Clim Dyn 41(7-8):2133–2144. doi:10.1007/s00382-012-1633-4

    Article  Google Scholar 

  2. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115(6):1083–1126. doi:10.1175/1520-0493(1987)115¡1083:CSAPOL¿2.0.CO;2

    Article  Google Scholar 

  3. Behrens E (2013) The oceanic response to Greenland melting: the effect of increasing model resolution.Universittsbibliothek Kiel, Kiel. http://macau.uni-kiel.de/receive/dissertation_diss_00013684

  4. Born A, Mignot J (2012) Dynamics of decadal variability in the Atlantic subpolar gyre: a stochastically forced oscillator. Clim Dyn 391(2):461–474. doi:10.1007/s00382-011-1180-4

    Article  Google Scholar 

  5. Brayshaw DJ, Hoskins B, Blackburn M (2011) The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J Atmos Sci 68(8):1784–1805. doi:10.1175/2011JAS3674.1

    Article  Google Scholar 

  6. Bryan FO, Hecht MW, Smith RD (2007) Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system, vol 16, pp 141–159

  7. Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6(11):1993–2011. doi:10.1175/1520-0442(1988)001¡0841:TSEOAC¿2.0.CO;2

    Article  Google Scholar 

  8. Delworth TL, Rosati A, Anderson W, Adcroft AJ, Balaji V, Benson R, Dixon K, Griffies SM, Lee HC, Pacanowski RC, Vecchi GA, Wittenberg AT, Zeng F, Zhang R (2012) Simulated climate and climate change in the GFDL CM2.5 high- resolution coupled climate model. J Clim 25(8):2755–2781. doi:10.1175/JCLI-D-11-00316.1

    Article  Google Scholar 

  9. Eden C, Greatbatch RJ, Boning CW (2004) Adiabatically correcting an eddy-permitting model using large-scale hydrographic data: application to the Gulf Stream and the North Atlantic Current. J Phys Oceanogr 34 (4):701–719. doi:10.1175/1520-0485(2004)034¡0701:ACAEMU¿2.0.CO;2

    Article  Google Scholar 

  10. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou S, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2014) Evaluation of climate models. In: Climate change 2013—the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp 741–866 , doi:10.1017/CBO9781107415324.020, (to appear in print)

  11. Folland CK, Scaife AA, Lindesay J, Stephenson DB (2012) How potentially predictable is northern European winter climate a season ahead?, vol 32, pp 801–818

  12. Ganachaud A, Wunsch C (2003) Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J Clim 16(4):696–705. doi:10.1175/1520-0442(2003)016¡0696:LSOHAF¿2.0.CO;2

    Article  Google Scholar 

  13. Gerdes R, Köberle C (1995) On the influence of DSOW in a numerical model of the North Atlantic general circulation. J Phys Oceanogr 25(11):2624–2642. doi:10.1175/1520-0485(1995)025¡2624:OTIODI¿2.0.CO;2

    Article  Google Scholar 

  14. Greatbatch RJ (2000) The North Atlantic Oscillation. Stoch Env Res Risk A 14(4-5):213–242. doi:10.1007/s004770000047

    Article  Google Scholar 

  15. Greatbatch RJ, Fanning AF, Goulding AD, Levitus S (1991) A diagnosis of interpentadal circulation changes in the North Atlantic. J Geophys Res 96(C12):22,009–22,023. doi:10.1029/91JC02423

    Article  Google Scholar 

  16. Greatbatch RJ, Sheng J, Eden C, Tang L, Zhai X, Zhao J (2004) The semi-prognostic method, vol 24, pp 2149–2165

  17. Greatbatch RJ, Zhai X, Claus M, Czeschel L, Rath W (2010) Transport driven by eddy momentum fluxes in the Gulf Stream extension region. Geophys Res Lett 24(L24):401. doi:10.1029/2010GL045473

    Google Scholar 

  18. Griffies SM, Winton M, Anderson WG, Benson R, Delworth TL, Dufour CO, Dunne JP, Goddard P, Morrison AK, Rosati A, Wittenberg AT, Yin J, Zhang R (2014) Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J Clim 28(3):952–977. doi:10.1175/JCLI-D-14-00353.1

    Article  Google Scholar 

  19. Hecht MW, Smith RD (2008) Toward a physical understanding of the North Atlantic: a review of model studies, in an eddying regime. In: Hecht MW, Hasumi H (eds) Ocean modeling in an eddying regime, American Geophysical Union, pp 213–239

  20. Hoskins BJ, Valdes PJ (1990) On the Existence of storm-tracks. J Atmos Sci 47(15):1854–1864. doi:10.1175/1520-0469(1990)047¡1854:OTEOST¿2.0.CO;2

    Article  Google Scholar 

  21. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact, American Geophysical Union, pp 1–35

  22. Keeley SPE, Sutton RT, Shaffrey LC (2012) The impact of North Atlantic sea surface temperature errors on the simulation of North Atlantic European region climate. QJR Meteorol Soc 138(668):1774–1783. doi:10.1002/qj.1912

    Article  Google Scholar 

  23. Lazier JRN (1994) Observations in the northwest corner of the North Atlantic Current. J Phys Oceanogr 24(7):1449–1463. doi:10.1175/1520-0485(1994)024¡1449:OITNCO¿2.0.CO;2

    Article  Google Scholar 

  24. Levitus S, Boyer T, Conkright M, O’Brien T, Antonov J, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) NOAA Atlas NESDIS 18, World Ocean Database. VOLUME 1: INTRODUCTION. U.S. Gov. Printing Office Washington D.C

  25. Madec G (2008) NEMO ocean engine Note du Pole de modélisation. Institut Pierre-Simon Laplace (IPSL), France

    Google Scholar 

  26. Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Clim 1 (9):841–866. doi:10.1175/1520-0442(1988)001¡0841:TSEOAC¿2.0.CO;2

    Article  Google Scholar 

  27. Mellor GL, Mechoso CR, Keto E (1982) A diagnostic calculation of the general circulation of the Atlantic Ocean, vol 29, pp 1171–1192

  28. Mertens C, Rhein M, Walter M, Böning CW, Behrens E, Kieke D, Steinfeldt R, Stöber U (2014) Circulation and transports in the Newfoundland Basin, western subpolar North Atlantic. J Geophys Res Oceans 119(11):7772–7793. doi:10.1002/2014JC010019

    Article  Google Scholar 

  29. Monterey G, Levitus S (1997) NOAA Atlas NESDIS 14: Seasonal variability of mixed layer depth for the world ocean. U.S.Gov. Printing Office, Washington, D.C.

  30. Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical pacific climate and its response to global warming in the Kiel Climate Model. J Clim 22(1):71–92. doi:10.1175/2008JCLI2261.1

  31. Ratcliffe RaS, Murray R (1970) New lag associations between North Atlantic sea temperature and European pressure applied to long-range weather forecasting. QJR Meteorol Soc 96(408):226–246. doi:10.1002/qj.49709640806

    Article  Google Scholar 

  32. Rodwell MJ, Folland CK (2002) Atlantic air–sea interaction and seasonal predictability. QJR Meteorol Soc 128(583):1413–1443. doi:10.1002/qj.200212858302

    Article  Google Scholar 

  33. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate, vol 398, pp 320–323

  34. Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5—part 1 MPI-Report 349, Max Planck Institute for Meteorology, Hamburg, Gemany

  35. Sarmiento JL, Bryan K (1982) An ocean transport model for the North Atlantic. J Geophys Res 87 (C1):394–408. doi:10.1029/JC087iC01p00394

    Article  Google Scholar 

  36. Sausen R, Barthel K, Hasselmann K (1988) Coupled ocean-atmosphere models with flux correction. Clim Dyn 2(3):145–163. doi:10.1007/BF01053472

    Article  Google Scholar 

  37. Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett 38(23):L23,703. doi:10.1029/2011GL049573

    Google Scholar 

  38. Scaife AA, Arribas A, Blockley E, Brookshaw A, Clark RT, Dunstone N, Eade R, Fereday D, Folland CK, Gordon M, Hermanson L, Knight JR, Lea DJ, MacLachlan C, Maidens A, Martin M, Peterson AK, Smith D, Vellinga M, Wallace E, Waters J, Williams A (2014) Skillful long-range prediction of European and North American winters. Geophys Res Lett 41(7):2014GL059,637. doi:10.1002/2014GL059637

    Google Scholar 

  39. Schott FA, Fischer J, Dengler M, Zantopp R (2006) Variability of the deep western boundary current east of the Grand Banks. Geophys Res Lett 33(21):L21S07. doi:10.1029/2006GL026563

    Google Scholar 

  40. Sheng J, Greatbatch RJ, Wright DG (2001) Improving the utility of ocean circulation models through adjustment of the momentum balance. J Geophys Res 106(C8):16,711–16,728. doi:10.1029/2000JC000680

    Article  Google Scholar 

  41. Valcke S (2006) OASIS3 User Guide. PRISM technical report. Tech. Rep. TR/CMGC/06/73 CERFACS Toulouse, France

  42. Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6(2):373–388. doi:10.5194/gmd-6-373-2013

    Article  Google Scholar 

  43. Wang C, Zhang L, Lee SK, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Chang 4(3):201–205. doi:10.1038/nclimate2118

    Article  Google Scholar 

  44. Weese SR, Bryan FO (2006) Climate impacts of systematic errors in the simulation of the path of the North Atlantic Current. Geophys Res Lett 19(L19):708. doi:10.1029/2006GL027669

    Google Scholar 

Download references

Acknowledgments

AD is grateful for support through the Helmholtz Graduate School HOSST. Support from the GEOMAR Helmholtz Centre for Ocean Research Kiel, the BMBF MiKlip project ATMOS and the EU NACLIM project is also acknowledged. The authors are also grateful to two anonymous reviewers for their helpful comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Annika Drews.

Additional information

This article is part of the Topical Collection on Atmosphere and Ocean Dynamics: A Scientific Workshop to Celebrate Professor Dr. Richard Greatbatch’s 60th Birthday, Liverpool, UK, 10–11 April 2014

Responsible Editor: Jinyu Sheng

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drews, A., Greatbatch, R.J., Ding, H. et al. The use of a flow field correction technique for alleviating the North Atlantic cold bias with application to the Kiel Climate Model. Ocean Dynamics 65, 1079–1093 (2015). https://doi.org/10.1007/s10236-015-0853-7

Download citation

Keywords

  • North Atlantic cold bias
  • Northwest corner
  • Empirical correction techniques
  • North Atlantic Current