Skip to main content
Log in

Impact of wind and tides on the Lena River freshwater plume dynamics in the summer season

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The Lena plume dynamics in the Lena Delta region of the Laptev Sea are explored in simulations performed with the Finite Volume Coastal Ocean Model (FVCOM) on a mesh with the horizontal resolution 0.4–5 km. The impact of wind and tides on the Lena plume propagation is analysed based on simulations for the summer season of 2008 and also on idealised experiments. All main Lena River freshwater channels (Trofimovskaya, Bykovskaya, Tumatskaya and Olenekskaya) produce buoyant outflows in the summer season. The surface plume buoyancy signature proves to be highly variable in time, especially in case of upwelling favourable wind events. Winds stronger than 6 m s−1 can already turn the dynamics of flows from all main freshwater channels to the wind-driven state. During the summer season, the bulk of freshwater from the Lena River stays in the eastern Laptev Sea because of location of the main Lena River freshwater channels, their large Kelvin numbers and light summer winds. Westward and northward plume excursions are wind-driven, and the model skill in simulating them depends on the available wind forcing. The main mechanism of tidal influence in the freshwater plume zone is through tidally induced mixing, except for the northern vicinity of the delta, where residual circulation may contribute to the plume eastward transport significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abrahamsen EP,Meredith MP, Falkner KK, Torres-Valdes S, Leng MJ, Alkire MB, Bacon S,Laxon SW, Polyakov I, IvanovV (2009) Tracer-derived freshwater composition of the Siberian continental shelf and slope following the extreme Arctic summer of 2007. Geophys Res Lett 36 L07602

  • Alexandrov VY, Martin T, Kolatschek J, Eicken H, Kreyscher M, Makshtas AP (2000) Sea ice circulation in the Laptev Sea and ice export to the Arctic Ocean: results from satellite remote sensing and numerical modelling. J Geophys Res 105(C7):17143–17159

    Article  Google Scholar 

  • Ashik IM, Kirillov SA, Makshtas AP, Smirnov VN, Sokolov VT, Timokhov LA (2010) The major results of the sea-going Arctic expeditions in the beginning of XXI century. Proc Arctic Antarctic Res Inst 1(84):100–115, in Russian

  • Bauch D, Dmitrenko I, Kirillov S, Wegner C, Hölemann J, Pivovarov S, Timokhov L, Kassens H (2009) Eurasian Arctic shelf hydrography: exchange and residence time of southern Laptev Sea waters. Cont Shelf Res 29(15):1815–1820

    Article  Google Scholar 

  • Bauch D, Hölemann JA, Nikulina A, Wegner C, Janout MA, Timokhov LA, Kassens H (2013) Correlation of river water and local sea-ice melting on the Laptev Sea shelf (Siberian Arctic). J Geophys Res Oceans 118:550–561

    Article  Google Scholar 

  • Bolshiyanov D, Makarov A, Schneider W, Stof G (2013) Origination and development of the Lena River Delta. AARI, St.Petersburg, 268 p., in Russian

  • Bulygina ON, Korshunova NN, Razuvaev VN (2014) Climatic conditions over the territory of Russia. RIHMI—WDC Publishing Meteo. http://meteo.ru/english/climate/cl2007e.php. Accessed 08 May 2014

  • Chen C, Liu H, Beardsley RC (2003) An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J Atmos Oceanic Tech 20(1):159–186

    Article  Google Scholar 

  • Chen C, Beardsley RC, Cowles G (2006) An unstructured grid, finite-volume coastal ocean model. FVCOM User Manual, 2nded. SMAST/UMASSD-06-0602

  • Chen C, Gao G, Qi J, ProshutinskyA BRC, Kowalik Z, Lin H, Cowles G (2009) A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM): an application for tidal studies. J Geophys Res 114:C08017

    Google Scholar 

  • Costard F, Gautier E, Brunstein D, Hammadi J, Fedorov A, Yang D, Dupeyrat L (2007) Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys Res Lett 34:L14501

    Article  Google Scholar 

  • Dmitrenko IA, Kirillov SA, Eicken H, Markova N (2005) Wind-driven summer surface hydrography of the eastern Siberian shelf. Geophys Res Lett 32:L14613

    Article  Google Scholar 

  • Dmitrenko IA, Kirillov SA, Tremblay LB (2008) The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: implication for climatic change. J Geophys Res 113:C03007

    Google Scholar 

  • Dmitrenko IA, Kirillov SA, Krumpen T, Makhotin M, Abrahamsen EP, Willmes S, Bloshkina E, Hölemann JA, Kassens H, Wegner C (2010a) Wind-driven diversion of summer river runoff preconditions the Laptev Sea coastal polynya hydrography: evidence from summer-to-winter hydrographic records of 2007–2009. Cont Shelf Res 30(15):1656–1664

    Article  Google Scholar 

  • Dmitrenko IA, Kiriilov SA, Tremblay LB, Bauch D, Hölemann J, Krumpen T, Kassens H, Wegener C, Heinemann G, Schröder D (2010b) Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. J Geophys Res 115:C08010

    Google Scholar 

  • Dmitrenko IA, Kirillov SA, Bloshkina E, Lenn YD (2012) Tide-induced vertical mixed in the Laptev Sea coastal polynya. J Geophys Res 117(C9)

  • Dobrovolsky AD and Zalogin BS (1982) The seas of the U.S.S.R. Lomonosov Moscow State University Press (in Russian)

  • Egbert GD, Bennett AF, Foreman MG (1994) TOPEX/Poseidon tides estimated using a global inverse model. J Geophys Res 99(C12):24821–24852

    Article  Google Scholar 

  • Fieg K, Gerdes R, Fahrbach E, Beszczynska-Möller A, Schauer U (2010) Simulation of oceanic volume transports through Fram Strait 1995–2004. Ocean Dyn 60:491–502

    Article  Google Scholar 

  • Fofonova V, Androsov A, Danilov S, Janout M, Sofina E, Wiltshire KH (2014) Semidiurnal tides in the Laptev Sea Shelf zone in the summer season. Cont Shelf Res 73:119–132

    Article  Google Scholar 

  • Fong DA, Geyer WR (2001) Response of a river plume during an upwelling favorable wind event. J Geophys Res 106(C1):1067–1084

    Article  Google Scholar 

  • Garvine RW (1995) A dynamical system for classifying buoyant coastal discharges. Cont Shelf Res 15:1585–1596

    Article  Google Scholar 

  • Hölemann J, Kirillov S, Klagge T, Novikhin A, Kassens H, Timokhov L (2011) Near-bottom water warming in the Laptev Sea in response to atmospheric and sea ice conditions in 2007. Polar Res 30:6425

    Article  Google Scholar 

  • Janout MA, Lenn YD (2014) Semidiurnal tides on the Laptev Sea shelf with implications for shear and vertical mixing. J Phys Oceanogr 44(1):202–219

    Article  Google Scholar 

  • Johnson MA, Polyakov I (2001) The Laptev Sea as a source for recent Arctic Ocean salinity change. Geophys Res Lett 28(10):2017–2020

    Article  Google Scholar 

  • Kagan BA, Sofina EV (2010) Ice-induced seasonal variability of tidal constants in the Arctic Ocean. Cont Shelf Res 30(6):643–647

    Article  Google Scholar 

  • Kagan BA, Romanenkov DA, Sofina EV (2008a) Tidal ice drift and ice-generated changes in the tidal dynamics/energetics on the Siberian Continental Shelf. Cont Shelf Res 28(3):351–368

    Article  Google Scholar 

  • Kagan BA, Romanenkov DA, Sofina EV (2008b) Combined tidal ice drift and ice-induced changes in the dynamics and energy of the combined tide on the Siberian Continental Shelf. Oceanology 48(3):317–326

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S, Hnilo J, Fiorino M, Potter G (2002) NCEP-DOE AMIP-II Reanalysis(R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kowalik Z, Proshutinsky AY (1994) The Arctic Ocean tides, in: Johannessen OM, Muench RD, Overland JE, The polar oceans and their role in shaping the global environment. Geophys Monogr Ser 85:137–158, AGU, Washington, D. C

  • Krauss W (1973) Methods and results of theoretical oceanography I, dynamics of the homogeneous and the quasi-homogeneous ocean, 1973. Gebr, Borntraeger, Berlin

    Google Scholar 

  • Krumpen T, Janout M, Hodges KI, Gerdes R, Girard-Ardhuin F, Hölemann JA, Willmes S (2013) Variability and trends in Laptev Sea ice outflow between 1992–2011. Cryosphere Discuss 6:2891–2930

    Article  Google Scholar 

  • Lenn YD, Rippeth TP, Old CP, Bacon S, Polyakov I, Ivanov V, Hölemann J (2011) Intermittent intense turbulent mixed under ice in the Laptev Sea Continental Shelf. J Phys Oceanogr 41(3):531–547

    Article  Google Scholar 

  • Magritsky DV (2001) The natural and anthropogenic changes in the hydrological regime of the lower reaches and estuaries of major rivers of Eastern Siberia. Dissertation, Lomonosov Moscow State University (in Russian)

  • Morison J, Kwok R, Peralta FC, Alkire M, Rigor I, Andersen R, Steele M (2012) Changing Arctic Ocean freshwater pathways. Nature 481:66–70

    Article  Google Scholar 

  • Padman L, Erofeeva S (2004) A barotropic inverse tidal model for the Arctic Ocean. Geophys Res Lett 31

  • Persson PO, Strang G (2004) A simple mesh generatorin MATLAB. SIAM Rev 46(2):329–345

    Article  Google Scholar 

  • Prange M, Gerdes R (2006) The role of surface freshwater flux boundary conditions in Arctic Ocean modelling. Ocean Model 13(1):25–43

    Article  Google Scholar 

  • Rozman P, Hölemann JA, Krumpen T, Gerdes R, Köberle C, Lavergne T, Adams S, Girard-Ardhuin F (2011) Validating satellite derived and modelled Sea-ice drift in the Laptev Sea with in situ measurements from the winter of 2007/08. Polar Res 30:7218

    Article  Google Scholar 

  • Schättler U, Doms G, Schraff C (2013) A description of the nonhydrostatic Regional COSMO-Model, part VII: user’s guide. Deutscher Wetterdienst, Germany

    Google Scholar 

  • Schröder D, Heinemann G, Willmes S (2011) The impact of a thermodynamic sea-ice module in the COSMO numerical weather prediction model on simulations for the Laptev Sea, Siberian Arctic. Polar Res 30:6334

    Article  Google Scholar 

  • Simpson JH (1997) Physical processes in the ROFI regime. J Mar Syst 12:3–15

    Article  Google Scholar 

  • Simpson JH, Crawford WR, Rippeth TP, Campbell AR, Choak JVS (1996) Vertical structure of turbulent dissipation in shelf seas. J Phys Oceanogr 26(8):1580–1590

    Article  Google Scholar 

  • Sofina EV (2008) The simulation of tidal ice drift and ice-related changes in tidal dynamics and energy in Siberian continental shelf. Dissertation, Russian State Hydrometeorological University (in Russian)

  • Steppeler J, Doms G, Schättler U, Bitzer HW, Cassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM.s.l. Meteorol Atmos Phys 82:75–96

    Article  Google Scholar 

  • Whitney MM, Garvine RW (2005) Wind influence on a coastal buoyant outflow. J Geophys Res 110:C03014

    Google Scholar 

  • Willmes S, Adams S, Schroeder D, Heinemann G (2011) Spatio-temporal variability of polynya dynamics and ice production in the Laptev Sea between the winters of 1979/80 and 2007/08. Polar Res 30:5971

    Article  Google Scholar 

  • Yang D, Liu B, Ye B (2005) Stream temperature changes over Lena River Basin in Siberia. Geophys Res Lett 32 (L05401)

  • Yankovsky A, Chapman DC (1997) A simple theory for the fate of buoyant coastal discharges. J Phys Oceanogr 27:1386–1401

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to C. Chen and the MEDM research group (University of Massachusetts, Dartmouth) for graciously sharing the FVCOM code. We are also indebted to B. Heim, T. Krumpen and S. Willmes for providing the satellite imagery data. The work was supported by the German Federal Ministry of Education and Research (BMBF) under the project ‘LenaDNM’, grant identifier is 01DJ14007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Fofonova.

Additional information

Responsible Editor: Pierre Lermusiaux

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fofonova, V., Danilov, S., Androsov, A. et al. Impact of wind and tides on the Lena River freshwater plume dynamics in the summer season. Ocean Dynamics 65, 951–968 (2015). https://doi.org/10.1007/s10236-015-0847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-015-0847-5

Keywords

Navigation