Skip to main content
Log in

Numerical investigation of fluid mud motion using a three-dimensional hydrodynamic and two-dimensional fluid mud coupling model

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Canestrelli A, Fagherazzi S, Lanzoni S (2012) A mass-conservative centered finite volume model for solving two-dimensional two-layer shallow water equations for fluid mud propagation over varying topography and dry areas. Adv Water Resour 40:54–70

    Article  Google Scholar 

  • Chen C, Liu H, Beardsley RC (2003) An unstructured, finite volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. J Atmos Ocean Technol 20(1):159–186

    Article  Google Scholar 

  • Cochard S, Ancey C (2009) Experimental investigation of the spreading of viscoplastic fluids on inclined planes. J Non-Newtonian Fluid Mech 158(1–3):73–84

    Article  Google Scholar 

  • Corbett DR, Dail M, Mckee B (2007) High-frequency time-series of the dynamic sedimentation processes on the western shelf of the Mississippi River Delta. Cont Shelf Res 27(10–11):1600–1615

    Article  Google Scholar 

  • Guan WB, Kot SC, Wolanski E (2005) 3-D fluid-mud dynamics in the Jiaojiang Estuary, China. Estuar Coast Shelf Sci 65(4):747–762

    Article  Google Scholar 

  • Kineke GC, Sternberg RW (1995) Distribution of fluid muds on the Amazon continental shelf. Mar Geol 125(3–4):193–233

    Article  Google Scholar 

  • Knoch D, Malcherec A (2011) A numerical model for simulation of fluid mud with different rheological behaviors. Ocean Dyn 61(2):245–256

    Article  Google Scholar 

  • Le Hir P, Bassoullet P, Jestin H (2000) Application of the continuous modeling concept to simulate high-concentration suspended sediment in a macrotidal estuary. Coastal and Estuarine Fine Sediment Processes. Proceedings of 5th international conference on nearshore and estuarine cohesive sediment processes, Seoul 3: 229–247

  • Le Normant C (2000) Three-dimensional modelling of cohesive sediment transport in the Loire estuary. Hydrol Process 14:2231–2243

    Article  Google Scholar 

  • Li JF, He Q, Xiang WH, Wan XN, Shen HT (2001) Fluid mud transportation at water wedge in the Changjiang Estuary. Sci China Chem 44(1):47–56

    Article  Google Scholar 

  • McAnally WH, Friedrichs C, Hamilton D, Hayter E, Shrestha P, Rodriguez H, Scheremet A, Teeter A (2007) Management of fluid mud in estuaries, bays, and lakes. I: present state of understanding on character and behaviour. J Hydraul Eng 133(1):9–22

    Article  Google Scholar 

  • Mei CC, Yuhi M (2001) Slow flow of a Bingham fluid in a shallow channel of finite width. J Fluid Mech 431:135–159

    Article  Google Scholar 

  • Odd NMV, Cooper AJ (1989) A two-dimensional model of the movement of fluid mud in a high energy turbid estuary. J Coast Res (SI 5): 185–193

  • Tang L (2013) Formation and movement of the fluid mud on muddy coast. PhD thesis, HoHai University, Nanjing, China (in Chinese)

  • Traykovski P, Geyer WR, Irish JD, Lynch JF (2000) The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf. Cont Shelf Res 20:2113–2140

    Article  Google Scholar 

  • van Kessel T, Kranenburg C (1996) Gravity current of fluid mud on sloping bed. J Hydraul Eng 122(12):710–717

    Article  Google Scholar 

  • Wan Y, Dano R, Li W, Qi D, Gu F (2014) Observation and modeling of the storm-induced fluid mud dynamics in a muddy-estuarine navigational channel. Geomorphology 217:23–36

    Article  Google Scholar 

  • Wang L, Winter C, Schrottke K, Hebbeln D, Bartholoma A (2008) Modelling of estuarine fluid mud evolution in troughs of large subaqueous dune. Proceedings of the Chinese-German joint symposium on hydraulic and ocean engineering. Eigenverlag, Darmstadt, 372–379

  • Watanabe R, Kusuda T, Yamanish H, Yamasaki K (2000) Modeling of fluid mud flow on an inclined bed. Coastal and Estuarine Fine Sediment Processes, Proceedings of 5th international conference on nearshore and estuarine cohesive sediment processes, Seoul, 3: 249–261

  • Winterwerp JC, Wang ZB, Van Kester JATM, Verweij JF (2002) Farfield impact of water injection dredging in the Crouch River. Proc ICE-Water Marit Eng 154(4):285–296

    Article  Google Scholar 

  • Xie M, Zhang W, Guo W (2010) A validation concept for cohesive sediment transport model and application on Lianyungang Harbor, China. Coast Eng 57(6):585–596

    Article  Google Scholar 

  • Yan Y (1995) Laterally-averaged numerical modeling of fluid mud formation and movement in estuaries. PhD thesis, Clemson University, South Carolina

  • Yen BC (2002) Open channel flow resistance. J Hydraul Eng 128(1):20–39

    Article  Google Scholar 

  • Zhang DC (1990) Preliminary study on the rheological parameters of Bingham fluid in laminar and uniform open channel flow. J Chengdu Univ Sci Technol 1:89–96 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The research was supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032130001), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51321065), and the National High Technology Research and Development Program of China (863 Program) (Grant No. 2012AA051709). We thank Dr. WU Yong-Sheng at the Bedford Institute of Oceanography for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghe Zhang.

Additional information

Responsible Editor: Earl Hayter

This article is part of the Topical Collection on the 12th International Conference on Cohesive Sediment Transport in Gainesville, Florida, USA, 21-24 October 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, Q. & Hao, L. Numerical investigation of fluid mud motion using a three-dimensional hydrodynamic and two-dimensional fluid mud coupling model. Ocean Dynamics 65, 449–461 (2015). https://doi.org/10.1007/s10236-015-0815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-015-0815-0

Keywords

Navigation