Determining return water levels at ungauged coastal sites: a case study for northern Germany

Abstract

We estimate return periods and levels of extreme still water levels for the highly vulnerable and historically and culturally important small marsh islands known as the Halligen, located in the Wadden Sea offshore of the coast of northern Germany. This is a challenging task as only few water level records are available for this region, and they are currently too short to apply traditional extreme value analysis methods. Therefore, we use the Regional Frequency Analysis (RFA) approach. This originates from hydrology but has been used before in several coastal studies and is also currently applied by the local federal administration responsible for coastal protection in the study area. The RFA enables us to indirectly estimate return levels by transferring hydrological information from gauged to related ungauged sites. Our analyses highlight that this methodology has some drawbacks and may over- or underestimate return levels compared to direct analyses using station data. To overcome these issues, we present an alternative approach, combining numerical and statistical models. First, we produced a numerical multidecadal model hindcast of water levels for the entire North Sea. Predicted water levels from the hindcast are bias corrected using the information from the available tide gauge records. Hence, the simulated water levels agree well with the measured water levels at gauged sites. The bias correction is then interpolated spatially to obtain correction functions for the simulated water levels at each coastal and island model grid point in the study area. Using a recommended procedure to conduct extreme value analyses from a companion study, return water levels suitable for coastal infrastructure design are estimated continuously along the entire coastline of the study area, including the offshore islands. A similar methodology can be applied in other regions of the world where tide gauge observations are sparse.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Andersen OB (1995) Global ocean tides from ERS 1 and TOPEX/POSEIDON altimetry. J Geophys Res 100(C12):25249–25259. doi:10.1029/95JC01389

    Article  Google Scholar 

  2. Arns A, Wahl T, Haigh ID, Jensen J, Pattiaratchi C (2013) Estimating extreme water level probabilities: a comparison of the direct methods and recommendations for best practise. Coast Eng 81:51–66. doi:10.1016/j.coastaleng.2013.07.003

    Article  Google Scholar 

  3. Bardet L, Duluc CM, Rebour V, L’Her J (2011) Regional frequency analysis of extreme storm surges along the French coast. Nat Hazards Earth Syst Sci 11:1627–1639

    Article  Google Scholar 

  4. Batstone C, Lawless M, Horsburgh K, Blackman D, Tawn J (2009) Calculating extreme sea level probabilities around complex coastlines. A best practice approach. Proceedings of the Irish National Hydrology Conference 2009

  5. Batstone C, Lawless M, Tawn J, Horsburgh K, Blackman D, McMillan A, Worth D, Laeger S, Hunt T (2013) A UK best-practice approach for extreme sea-level analysis along complex topographic coastlines. Ocean Eng 71:28–39

    Article  Google Scholar 

  6. Baxter PJ (2005) The east coast big flood, 31 January–1 February 1953: a summary of the human disaster. Philos Trans R Soc A Math Phys Eng Sci 363:1293–1312

    Article  Google Scholar 

  7. Bernadara P, Andreewsky M, Benoit M (2011) Application of regional frequency analysis to the estimation of extreme storm surges. Journal of Geophysical Research, Vol. 116

  8. Bocchiola D, De Michele C, Rosso R (2003) Review of recent advances in index flood estimation. Hydrol Earth Syst Sci 7:283–296

    Article  Google Scholar 

  9. Bütow H (1963) Die große Flut in Hamburg: eine chronik der katastrophe vom Februar 1962. Verlag: Hansestadt, German

  10. Castellarin A, Burn DH, Brath A (2008) Homogeneity testing: how homogeneous do heterogeneous cross-correlated regions seem? J Hydrol 160:67–76

    Article  Google Scholar 

  11. Coles S (2001) An introduction to statistical modeling of extreme values. Springer Verlag, London

    Google Scholar 

  12. Compo GB, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  13. Cunnane C (1987) Review of statistical models for flood frequency estimation. Springer, Netherlands

    Google Scholar 

  14. Dangendorf S, Mudersbach C, Jensen J, Ganske A, Heinrich H (2013a) Seasonal to decadal forcing of high water level percentiles in the German Bight throughout the last century. Ocean Dyn 63(5):533–548

    Google Scholar 

  15. Dangendorf S, Wahl T, Nilson E, Klein B, Jensen J (2013b) A new athmosperic proxy for sea level variability in the southeastern North Sea: observations and future ensemble projections. Climate Dynamics

  16. Dangendorf S, Müller-Navarra S, Jensen J, Schenk F, Wahl T, Weisse R (2014) North Sea storminess from a novel storm surge record since AD 1843. J Clim 27:3582–3595

    Article  Google Scholar 

  17. Gerritsen H (2005) What happened in 1953? The big flood in the Netherlands in retrospect. Philos Trans R Soc A Math Phys Eng Sci 363:1271–1291

    Article  Google Scholar 

  18. Haigh ID, Nicholls R, Wells N (2010) A comparison of the main methods for estimating probabilities of extreme still water levels. Coast Eng 57(9):838–849

    Article  Google Scholar 

  19. Haigh ID, Wijeratne EMS, MacPherson LR, Pattiaratchi CB, George S (2014a) Estimating present day extreme total water level exceedance probabilities around the coastline of Australia: tides, extra-tropical storm surges and mean sea level. Clim Dyn. doi:10.1007/s00382-012-1652-1

    Google Scholar 

  20. Haigh ID, MacPherson LR, Mason MS, Wijeratne EMS, Pattiaratchi CB, Crompton RP, George S (2014b) Estimating present day extreme total water level exceedance probabilities around the coastline of Australia: tropical cyclone induced storm surges. Clim Dyn. doi:10.1007/s00382-012-1653-0

    Google Scholar 

  21. Hosking JRM (1990) L-moments analysis and estimation of distributions using linear combination of order statistics. J R Stat Soc 52:105–124

    Google Scholar 

  22. Hosking JRM, Wallis JR (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29:339–349

    Article  Google Scholar 

  23. Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(2):271–281

    Article  Google Scholar 

  24. Hosking JRM, Wallis JR (1997) Regional frequency analysis. Cambridge University Press, Cambridge

    Google Scholar 

  25. Jensen J, Müller-Navarra S (2008) Storm surges on the German coast. Die Küste Heft 74:92–125

    Google Scholar 

  26. Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97

    Article  Google Scholar 

  27. Lamb H (1991) Historic storms of the North Sea, British Isles and Northwest Europe. Cambridge University Press, Cambridge

    Google Scholar 

  28. Losada IJ, Reguero BG, Méndez FJ, Castanedo S, Abascal AJ, Minguez R (2013) Long-term changes in sea-level components in Latin America and the Caribbean. Glob Planet Chang 104:34–50

    Article  Google Scholar 

  29. Mai VC, van Gelder P, Vrijling JK (2006) Statistical methods to estimate extreme quantile values of the sea data. Proceedings of the Fifth International Symposium on Evironmental Hydraulics (ISEH-V), Tempe, Arizona

    Google Scholar 

  30. McMillan A, Batstone C, Worth D, Tawn J, Horsburgh K, Lawless M (2011) Coastal flood boundary conditions for UK mainland and islands. Project: SC060064/TR2: Design sea-levels. Environment Agency of England and Wales

  31. McRobie A, Spencer T, Gerritsen H (2005) The big flood: north sea storm surge. Philos Trans R Soc A Math Phys Eng Sci 363:1263–1270

    Article  Google Scholar 

  32. MELUR (Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein) (2013) Generalplan Küstenschutz des Landes Schleswig-Holstein. Fortschreibung 2012, Kiel, Germany

  33. Merz R, Blöschl G (2005) Flood frequency regionalisation—spatial proximity vs. catchment attributes. J Hydrol 302(1–4):283–306

    Article  Google Scholar 

  34. Mudelsee M, Chirila D, Deutschländer T et al. (2010) Climate model bias correction und die deutsche anpassungsstrategie. Mitteilungen Deutsche Meteorologische Gesellschaft, p. 2–7 (in German)

  35. Peel M, Wang QJ, Vogel RM, McMahon TA (2001) The utility of L-moment ratio diagrams for selecting a regional probability distribution. Hydrol Sci J 46:147–155

    Article  Google Scholar 

  36. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192

    Article  Google Scholar 

  37. Quedens G (1992) Die Halligen. Breklumer Verlag, Breklum (in German)

  38. Rao AR, Hamed KH (2000) Flood frequency analysis. CRC Press, Boca Raton

    Google Scholar 

  39. Smith RL (1986) Extreme value theory based on the r largest annual events. J Hydrol 86(1–2):21–43

    Google Scholar 

  40. Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New-York, pp 18.1–18.66

    Google Scholar 

  41. van Gelder P, Nykov MN (1998) Regional frequency analysis of extreme water levels along the Dutch coast using L-moments: a preliminary study. Proceedings of the 8th international probabilistic workshop, Szcecin

    Google Scholar 

  42. Viglione A, Laio F, Claps P (2006) A comparison of homogeneity tests for regional frequency analysis. Water Resources Research, Vol. 43, Issue 3

  43. Von Storch H, Woth K (2006) Storm surges—the case of Hamburg, Germany. ESSP OSC panel session on “GEC, natural disasters, and their implications for human security in coastal urban areas”. Available online: http://www.safecoast.nl/editor/databank/File/hamburg-storms.pdf. Accessed 26 Jan 2012

  44. Wahl T, Haigh ID, Woodworth PL, Albrecht F, Dillingh D, Jensen J, Nicholls RJ, Weisse R, Wöppelmann G (2013) Observed mean sea level changes around the North 3 Sea coastline from 1800 to present. Earth Sci Rev 124:51–67. doi:10.1016/j.earscirev.2013.05.003

    Article  Google Scholar 

  45. Weiss J, Bernadara P, Benoit M (2013) A method to identify and form homogeneous regions for regional frequency analysis of extreme skew storm surges. Proceedings of the 1st International Short Conference on Advances in Extreme Value Analysis and Application to Natural Hazards (EVAN2013), Siegen

    Google Scholar 

  46. Weiss J, Bernardara P, Benoit M (2014) Modeling intersite dependence for regional frequency analysis of extreme marine events. Water Resour Res 50(7):5926–5940. doi:10.1002/2014WR015391

    Article  Google Scholar 

  47. Willmot CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Google Scholar 

  48. Wiltshire SE (1985) Grouping basins for regional flood frequency analysis. Hydrol Sci J 30(1):151–159. doi:10.1080/02626668509490976

    Article  Google Scholar 

Download references

Acknowledgments

All analyses presented here were part of the German Coastal Engineering Research Council (KFKI) project “ZukunftHallig”, funded by the German Federal Ministry of Education and Research BMBF through the project management of Projektträger Jülich PTJ under the grant number 03KIS093. I.D. Haigh time was funded by the UKs EPSRC Flood Memory project number EP/K013513/1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arne Arns.

Additional information

This article is part of the Topical Collection on the 7th International Conference on Coastal Dynamics in Arcachon, France, 2428 June 2013

Responsible Editor: Aldo Sottolichio

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arns, A., Wahl, T., Haigh, I.D. et al. Determining return water levels at ungauged coastal sites: a case study for northern Germany. Ocean Dynamics 65, 539–554 (2015). https://doi.org/10.1007/s10236-015-0814-1

Download citation

Keywords

  • Extreme value statistics
  • Storm surges
  • Coastal flooding
  • Return periods
  • Hydrodynamic modeling
  • North Sea
  • Germany