Ocean Dynamics

, Volume 65, Issue 3, pp 419–434 | Cite as

East Frisian Wadden Sea hydrodynamics and wave effects in an unstructured-grid model

  • Sebastian GrashornEmail author
  • Karsten A. Lettmann
  • Jörg-Olaf Wolff
  • Thomas H. Badewien
  • Emil V. Stanev
Part of the following topical collections:
  1. Topical Collection on the 16th biennial workshop of the Joint Numerical Sea Modelling Group (JONSMOD) in Brest, France 21-23 May 2012


An unstructured-grid model (FVCOM) coupled to a surface wave model (FVCOM-SWAVE) with two different setups is used to investigate the hydrodynamic and wave energy conditions during a moderate wind and a storm situation in the southern North Sea. One setup covers the whole North Sea with moderately increased grid resolution at the coast, whereas the other is a very high-resolution Wadden Sea setup that is one-way coupled to the coarser North Sea model. The results of both model setups are validated, compared to each other and analysed with a focus on longshore currents and wave energy. The numerical results show that during storm conditions, strong wave-induced longshore currents occur in front of the East Frisian Wadden Sea islands with current speeds up to 1 m/s. The model setup with the higher resolution around the islands shows even stronger currents than the coarser setup. The wave-current interaction also influences the surface elevation by raising the water level in the tidal basins. The calculated wave energies show large differences between moderate wind and storm conditions with time-averaged values up to 200 kW/m.


Numerical modelling FVCOM Wave-current interaction Longshore currents Wave energy Wadden Sea 



The study was supported by the Ministry for Science and Culture of Lower Saxony within the network KLIFF—climate impact and adaption research in Lower Saxony, the initiative Earth Science Knowledge Platform (ESKP) operated by the Helmholtz Association and the North-German Supercomputing Alliance (Norddeutscher Verbund zur Förderung des Hoch- und Höchstleistungsrechnens—HLRN). The authors like to thank Changsheng Chen and the other developers of the ocean modelling suite FVCOM for providing the source code of the ocean model, Reinhard Leidl and staff at the cluster HERO (High-End Computing Resource Oldenburg), funded by the Deutsche Forschungsgemeinschaft (DFG) and the Ministry of Science and Culture (MWK) of the State of Lower Saxony, Germany and the people at the BSH, Federal Maritime and Hydrographic Agency of Germany. The authors also like to thank Oliver Bleich and Steffen Rettig for extracting and optimising coastline data and Burghard Flemming for advice on prescriptive linguistics.


  1. Aiki H, Greatbatch R J (2012) Thickness-weighted mean theory for the effect of surface gravity waves on mean flows in the upper ocean. J Phys Oceanogr 42:725–747CrossRefGoogle Scholar
  2. Aiki H, Greatbatch R J (2013) The vertical vtructure of the surface wave radiation stress for circulation over a sloping bottom as given by thickness-weighted-mean theory. J Phys Oceanogr 43(1):149–164CrossRefGoogle Scholar
  3. Aiki H, Greatbatch R J (2014) A new expression for the form stress term in the vertically Lagrangian mean framework for the effect of surface waves on the upper-ocean circulation. J Phys Oceanogr 44(1):3–23CrossRefGoogle Scholar
  4. Andrews DG, McIntyre ME (1978) An exact theory of nonlinear waves on a Lagrangian-mean flow. J Fluid Mech 89:609–646CrossRefGoogle Scholar
  5. Ardhuin F, Jenkins AD, Belibassakis KA (2008a) Comments on The Three-Dimensional Current and Surface Wave Equations. J Phys Oceanogr 38(6):1340–1350Google Scholar
  6. Ardhuin F, Rascle N, Belibassakis K A (2008b) Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model 20(1):35–60CrossRefGoogle Scholar
  7. Bartholomä A, Kubicki A, Badewien T H, Flemming B W (2009) Suspended sediment transport in the German Wadden Sea-seasonal variations and extreme events. Ocean Dyn 59(2):213–225CrossRefGoogle Scholar
  8. Bennis AC, Ardhuin F (2011) Comments on The depth-dependent current and wave interaction equations: A Revision. J Phys Oceanogr 41(10):2008–2012CrossRefGoogle Scholar
  9. Benoit M, Marcos F, Becq F (1996) Development of a third generation shallow-water wave model with unstructured spatial meshing. In: Proceedings of the 25th International Conference on Coastal Engineering, ASCE, Orlando, pp. 465–478Google Scholar
  10. Bolanos R, Wolf J, Brown J, Osuna P, Monbaliu J, Sanchez-Arcilla A (2008) The POLCOMS-WAM Wave-Current Interaction Model: development and performance in the NW Mediterranean. In: Guedes Soares C, Kolev PK (eds) Maritime industry, ocean engineering and coastal resources: proceedings of the 12th International congress of the international maritime association of the Mediterranean, (IMAM 2007), Varna, Bulgaria, 2-6 September 2007. London, Taylor Francis, 685–691Google Scholar
  11. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res 104(C4):7649–7666CrossRefGoogle Scholar
  12. Brown J M, Bolaños R, Wolf J (2011) Impact assessment of advanced coupling features in a tide-surge-wave model, POLCOMS-WAM, in a shallow water application. J Mar Syst 87(1):13–24CrossRefGoogle Scholar
  13. Brown J M, Bolaños R, Wolf J (2013) The depth-varying response of coastal circulation and water levels to 2D radiation stress when applied in a coupled wave-tide-surge modelling system during an extreme storm. Coast Eng 82:102–113CrossRefGoogle Scholar
  14. Chawla A, Spindler D, Tolman H (2012) 30 Year Wave Hindcasts using WAVEWATCH III with CFSR winds–Phase 1. Tech. Note 302, NOAA/NWS/NCEP/MMAB, 12 ppGoogle Scholar
  15. Chen C, Beardsley R C, Cowles G (2006) An unstructured grid, finite-volume coastal ocean model, FVCOM user manual 2nd edn. SMAST/UMASSD Tech. Rep. 06-0602, 315 pp, School for Marine Science and Technology. University of Massachusetts-Dartmouth, New Bedford. MAGoogle Scholar
  16. Chen C, Liu H, Beardsley R C (2003) An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J Atmos Oceanic Technol 20(1):159–186CrossRefGoogle Scholar
  17. Cornett A, Zhang J (2008) Nearshore Wave Energy Resources, Western Vancouver Island, B.C., Technical Report CHC-TR-51, Canadian Hydraulics CentreGoogle Scholar
  18. Dastgheib A, Roelvink J A, Wang Z B (2008) Long-term process-based morphological modeling of the Marsdiep Tidal Basin. Mar Geol 256(1–4):90–100CrossRefGoogle Scholar
  19. Dissanayake D M P K, Roelvink J A, van der Wegen M (2009) Modelled channel patterns in a schematized tidal inlet. Coastal Eng 56(11–12):1069–1083CrossRefGoogle Scholar
  20. Fenton J D, McKee W D (1990) On calculating the lengths of water waves. Coastal Eng 14(6):499–513CrossRefGoogle Scholar
  21. Flemming B W, Bartholomä A (1997) Response of the Wadden Sea to a rising sea level: a predictive empirical model. Dtsch Hydrogr Z 49(2–3):343–353CrossRefGoogle Scholar
  22. Flemming B W, Delafontaine M T (1994) Biodeposition in a juvenile mussel bed of the East Frisian Wadden Sea (Southern North Sea). Neth J Aquat Ecol 28(3–4):289–297CrossRefGoogle Scholar
  23. Geuzaine C, Remacle J F (2009) GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79(11):1309–1331CrossRefGoogle Scholar
  24. Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University PressGoogle Scholar
  25. Krögel F, Flemming B W (1998) Evidence for temperature-adjusted sediment distributions in the back-barrier tidal flats of the East Frisian Wadden Sea (southern North Sea). In: C R Alexander et al. (eds) (1998) Tidalites: processes & products. SEPM Special Publication, no. 61. SEPM, Tulsa, pp. 31–41Google Scholar
  26. Lane E M, Restrepo J M, McWilliams J C (2007) Wave-current interaction: a comparison of radiation stress and vortex-force representations. J Phys Oceanogr 37(5):1122–1141CrossRefGoogle Scholar
  27. Lettmann K A, Wolff J-O, Badewien T H (2009) Modeling the impact of wind and waves on suspended particulate matter fluxes in the East Frisian Wadden Sea (southern North Sea). Ocean Dyn 59(2):239–262CrossRefGoogle Scholar
  28. Loewe P (2009) System Nordsee—Zustand 2005 im Kontext langzeitlicher Entwicklungen. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 44Google Scholar
  29. Longuet-Higgins MS (1970) Longshore currents generated by obliquely incident sea waves, 1. J Geophys Res 75(33):6778–6789CrossRefGoogle Scholar
  30. Longuet-Higgins M S, Stewart R W (1962) Radiation stress and mass transport in gravity waves, with application to surf beats'. J Fluid Mech 13(4):481–504CrossRefGoogle Scholar
  31. Longuet-Higgins M S, Stewart R W (1964) Radiation stresses in water waves: a physical discussion with applications. Deep-Sea Res 11:529–562Google Scholar
  32. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415CrossRefGoogle Scholar
  33. Mellor G (2003) The three-dimensional current and surface wave equations. J Phys Oceanogr 33(9):1978–1989CrossRefGoogle Scholar
  34. Mellor G (2005) Some consequences of the three-dimensional current and surface equations. J Phys Oceanogr 35(11):2291–2298CrossRefGoogle Scholar
  35. Mellor G L (2008) The depth-dependent current and wave interaction equations: a revision. J Phys Oceanogr 38(11):2587–2596CrossRefGoogle Scholar
  36. Mellor G (2011a) Wave radiation stress. Ocean Dyn 61(5):563–568CrossRefGoogle Scholar
  37. Mellor G (2011b). Corrigendum J Phys Oceanogr 41(7):1417–1418CrossRefGoogle Scholar
  38. Mellor G (2011c). Reply J Phys Oceanogr 41(10):2013–2015CrossRefGoogle Scholar
  39. Mellor G (2013) Waves, circulation and vertical dependance. Ocean Dyn 63(4):447–457CrossRefGoogle Scholar
  40. Mellor G L, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4): 851–875CrossRefGoogle Scholar
  41. Moghimi S, Klingbeil K, Gräwe U, Burchard H (2013) A direct comparison of a depth-dependent radiation stress formulation and a vortex force formulation within a three-dimensional coastal ocean model. Ocean Model 70:132–144CrossRefGoogle Scholar
  42. Osuna P, Monbaliu J (2004) Wave-current interaction in the southern North Sea. J Mar Sys 52(1–4):65–87Google Scholar
  43. Phillips OM (1977) The dynamics of the upper ocean. Cambridge University PressGoogle Scholar
  44. Pleskachevsky A, Eppel D P, Kapitza H (2009) Interaction of waves, currents and tides, and wave-energy impact on the beach area of Sylt Island. Ocean Dyn 59(3):451–461CrossRefGoogle Scholar
  45. Qi J, Chen C, Beardsley R C, Perry W, Cowles G W, Lai Z (2009) An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): implementation, validations and applications. Ocean Model 28(1–3):153–166CrossRefGoogle Scholar
  46. Rascle N, Ardhuin F (2013) A global wave parameter database for geophysical applications. Part 2: model validation with improved source term parameterization. Ocean Model 70:174–188CrossRefGoogle Scholar
  47. Reuter R, Badewien T H, Bartholomä A, Braun A, Lübben A, Rullkötter J (2009) A hydrographic time series station in the Wadden Sea (southern North Sea). Ocean Dyn 59(2):195–211CrossRefGoogle Scholar
  48. Roland A, Ardhuin F (2014) On the developments of spectral wave models: numerics and parameterizations for the coastal ocean. Ocean Dyn 64(6):833–846CrossRefGoogle Scholar
  49. Santamarina Cuneo P, Flemming B W (2000) Quantifying concentration and flux of suspended particulate matter through a tidal inlet of the East Frisian Wadden Sea by acoustic Doppler current profiling. In: B W Flemming et al. (eds) Muddy Coast Dynamics and Resource Management. Proceedings in Marine Science, vol. 2. Elsevier, Amsterdam, pp.39–52Google Scholar
  50. Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Wea Rev 91(3):99–164CrossRefGoogle Scholar
  51. Stanev E V, Flöser G, Wolff J-O (2003a) First- and higher-order dynamical controls on water exchanges between tidal basins and the open ocean. A case study for the East Frisian Wadden Sea. Ocean Dyn 53(3):146–165CrossRefGoogle Scholar
  52. Stanev E V, Wolff J-O, Burchard H, Bolding K, Flöser G (2003b) On the circulation in the East Frisian Wadden Sea: numerical modeling and data analysis. Ocean Dyn 53(1):27–51CrossRefGoogle Scholar
  53. Stanev E V, Wolff J-O, Brink-Spalink G (2006) On the sensitivity of the sedimentary system in the East Frisian Wadden Sea to sea-level rise and wave-induced bed shear stress. Ocean Dyn 56(3–4):266–283CrossRefGoogle Scholar
  54. Stanev E V, Brink-Spalink G, Wolff J-O (2007a) Sediment dynamics in tidally dominated environments controlled by transport and turbulence: a case study for the East Frisian Wadden Sea. J Geophys Res 112(C4)Google Scholar
  55. Stanev E V, Flemming B W, Bartholomä A, Staneva J V, Wolff J-O (2007b) Vertical circulation in shallow tidal inlets and back-barrier basins. Cont Shelf Res 27(6):798–831CrossRefGoogle Scholar
  56. Stanev E V, Grayek S, Staneva J (2008) Temporal and spatial circulation patterns in the East Frisian Wadden Sea. Ocean Dyn 59(2):167–181CrossRefGoogle Scholar
  57. Staneva J, Stanev E V, Wolff J-O, Badewien T H, Reuter R, Flemming B, Bartholomä A, Bolding K (2009) Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Cont Shelf Res 29(1):302–319CrossRefGoogle Scholar
  58. Thornton E B, Guza R T (1986) Surf Zone Longshore Currents and Random Waves: field data and models. J Phys Oceanogr 16(7):1165–1178CrossRefGoogle Scholar
  59. Timmermann R, Danilov S, Schröter J, Böning C, Sidorenko D, Rollenhagen K (2009) Ocean circulation and sea ice distribution in a finite element global sea ice-ocean model. Ocean Model 27(3-4):114–129CrossRefGoogle Scholar
  60. Tolman HL (2009) User manual and system documentation of WAVEWATCH-III version 3.14. Tech Rep 276 NOAA-NWS-NCEP-MMABGoogle Scholar
  61. Van der Wegen M, Dastgheib A, Roelvink J A (2010) Morphodynamic modeling of tidal channel evolution in comparison to empirical PA relationship. Coastal Eng 57(9):827–837CrossRefGoogle Scholar
  62. Van der Westhuysen J A, van Dongeren A R, Groeneweg J, van Vledder GPh, Peters H, Gautier C, van Nieuwkoop J C C (2012) Improvements in spectral wave modeling in tidal inlet areas. J Geophys Res 117(C11)Google Scholar
  63. WAMDI group (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810CrossRefGoogle Scholar
  64. Wang Z B, Hoekstra P, Burchard H, Ridderinkhof H, De Swart H E, Stive M J F (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast Manage 68:39–57CrossRefGoogle Scholar
  65. Weisse R, von Storch H, Niemeyer H D, Knaack H (2012) Changing north sea storm surge climate: an increasing hazard? Ocean Coast Manage 68:58–68CrossRefGoogle Scholar
  66. Wu L, Chen C, Guo P, Shi M, Qi J, Ge J (2011) A fvcom-based unstructured grid wave, current, sediment transport model, i. model description and validation. J Ocean Univ China 10(1):1–8CrossRefGoogle Scholar
  67. Yu Q, Wang Y, Flemming B, Gao S (2012) Modelling the equilibrium hypsometry of back-barrier tidal flats in the German Wadden Sea (southern North Sea). Cont Shelf Res 49:90–99CrossRefGoogle Scholar
  68. Zijlema M (2010) Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Eng 57(3):267–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastian Grashorn
    • 1
    Email author
  • Karsten A. Lettmann
    • 2
  • Jörg-Olaf Wolff
    • 2
  • Thomas H. Badewien
    • 3
  • Emil V. Stanev
    • 1
  1. 1.Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research (HZG), Institute of Coastal ResearchGeesthachtGermany
  2. 2.Institute for Chemistry and Biology of the Marine Environment (ICBM), Department of Physical Oceanography (Theory)Carl von Ossietzky Universität OldenburgOldenburgGermany
  3. 3.Institute for Chemistry and Biology of the Marine Environment (ICBM), Department of Marine Sensor SystemsCarl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations