Skip to main content

Advertisement

Log in

Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: the contribution of thermocline depth change and internal climate variability

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the spatial trend patterns and variability of observed sea level and upper ocean thermal structure in the Pacific Ocean during the altimetry era (1993–2012), and the role of thermocline depth changes. The observed sea level trend pattern in this region results from the superposition of two main signals: (1) a strong broad-scale V-shaped positive trend anomaly extending to mid-latitudes in the central Pacific and (2) another very strong positive trend anomaly located in the western tropical Pacific within about 120° E–160° E and 20° S–20° N latitude. In this study, we focus on the tropical Pacific (20° N–20° S) where the strongest trends in sea level are observed. By making use of in situ observational data, we study the impact of thermocline depth changes on steric sea level between the surface and 700 m and its relation with the altimetry-based observed sea level changes. This is done by calculating the time-varying thermocline depth (using the 20 °C isotherm depth as a proxy) and estimating the sea level trend patterns of the thermocline-attributed individual steric components. We show that it is essentially the vertical movement of the thermocline that governs most of the observed sea level changes and trends in the tropical Pacific. Furthermore, we also show that in the equatorial band, the changes in the upper ocean thermal structure are in direct response to the zonal wind stress. Away from the equatorial band (say, within 5°–15° latitude), the changes in the upper ocean thermal structure are consistent with the wind stress-generated Rossby waves. We also estimate the contribution of the Interdecadal Pacific Oscillation (IPO) on the vertical thermal structure of the tropical Pacific Ocean. Removing the IPO contribution to the upper layer steric sea level provides a non-negligible residual pattern, suggesting that IPO-related internal ocean variability alone cannot account for the observed trend patterns in the Pacific sea level. It is likely that the residual signal may also reflect non-linear interactions between different natural modes like El Niño Southern Oscillation (ENSO), IPO, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci 5(2):193–201

    Article  Google Scholar 

  • Becker M, Meyssignac B, Letetrel C, Llovel W, Cazenave A, Delcroix T (2012) Sea level variations at tropical Pacific islands since 1950. Glob Planet Chang 80–81:85–98. doi:10.1016/j.gloplacha.2011.09.004

    Article  Google Scholar 

  • Becker M, Karpytchev M, Lennartz-Sassinek S (2014) Long-term sea level trends: natural or anthropogenic?. Geophys Res Lett 41(15), 2014GL061027, doi: 10.1002/2014GL061027

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Bromirski PD, Miller AJ, Flick RE, Auad G (2011) Dynamical suppression of sea level rise along the Pacific coast of North America: indications for imminent acceleration. J Geophys Res Oceans 116(C7), n/a–n/a, doi: 10.1029/2010JC006759.

  • Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—comparisons with observations. Geophys Res Lett 30(6), n/a–n/a, doi: 10.1029/2002GL016473

  • Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J Geophys Res Oceans 110(C9), n/a–n/a, doi: 10.1029/2004JC002817

  • Cazenave A, Cozannet GL (2014) Sea level rise and its coastal impacts. Earths Future 2(2):15–34. doi:10.1002/2013EF000188

    Article  Google Scholar 

  • Chaen M, Wyrtki K (1981) The 20 °C isotherm depth and sea level in the western equatorial pacific. J Oceanogr Soc Jpn 37(4):198–200. doi:10.1007/BF02309057

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Delcroix T (1998) Observed surface oceanic and atmospheric variability in the tropical Pacific at seasonal and ENSO timescales: a tentative overview. J Geophys Res Oceans 103(C9):18611–18633. doi:10.1029/98JC00814

    Article  Google Scholar 

  • Delcroix T, Hénin C (1989) Mechanisms of subsurface thermal structure and sea surface thermohaline variabilities in the southwestern tropical Pacific during 1975–85. J Mar Res 47:777–812

    Article  Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 17(16):3109–3124. doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2

    Article  Google Scholar 

  • Durand F, Delcroix T (2000) On the variability of the tropical pacific thermal structure during the 1979–96 period, as deduced from XBT sections. J Phys Oceanogr 30(12):3261–3269. doi:10.1175/1520-0485(2000)030<3261:OTVOTT>2.0.CO;2

    Article  Google Scholar 

  • England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Chang 4(3):222–227. doi:10.1038/nclimate2106

    Article  Google Scholar 

  • Folland CK, Parker DE, Colman A, Washington R (1999) Large scale modes of ocean surface temperature since the late nineteenth century. In: Navarra A (ed) Beyond El Nino: decadal and interdecadal climate variability. Springer, Berlin, Refereed book: chapter 4, pp 73–102

    Google Scholar 

  • Fukumori I, Wang O (2013) Origins of heat and freshwater anomalies underlying regional decadal sea level trends. Geophys Res Lett 40(3):563–567. doi:10.1002/grl.50164

    Article  Google Scholar 

  • Garzoli SL, Katz EJ (1983) The forced annual reversal of the Atlantic north equatorial countercurrent. J Phys Oceanogr 13(11):2082–2090. doi:10.1175/1520-0485(1983)013<2082:TFAROT>2.0.CO;2

    Article  Google Scholar 

  • Gouretski V, Koltermann KP (2007) How much is the ocean really warming?. Geophys Res Lett 34(1), n/a–n/a, doi: 10.1029/2006GL027834

  • Hamlington BD, Leben RR, Strassburg MW, Nerem RS, Kim K-Y (2013) Contribution of the Pacific Decadal Oscillation to global mean sea level trends. Geophys Res Lett 40(19):5171–5175. doi:10.1002/grl.50950

    Article  Google Scholar 

  • Hamlington BD, Strassburg MW, Leben RR, Han W, Nerem RS, Kim K-Y (2014) Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nat Clim Chang 4(9):782–785. doi:10.1038/nclimate2307

    Article  Google Scholar 

  • Han W et al (2013) Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim Dyn 1–23. doi: 10.1007/s00382-013-1951-1

  • Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65(3):287–299. doi:10.1007/s10872-009-0027-7

    Article  Google Scholar 

  • Kessler WS (1990) Observations of long Rossby waves in the northern tropical Pacific. J Geophys Res Oceans 95(C4):5183–5217. doi:10.1029/JC095iC04p05183

    Article  Google Scholar 

  • Köhl A, Stammer D (2008) Decadal sea level changes in the 50-year GECCO ocean synthesis. J Clim 21(9):1876–1890. doi:10.1175/2007JCLI2081.1

    Article  Google Scholar 

  • Köhl A, Stammer D, Cornuelle B (2007) Interannual to decadal changes in the ECCO global synthesis. J Phys Oceanogr 37(2):313–337. doi:10.1175/JPO3014.1

    Article  Google Scholar 

  • Le Traon P-Y, Ogor F (1998) ERS-1/2 orbit improvement using TOPEX/POSEIDON: the 2 cm challenge. J Geophys Res 103(C4):8045. doi:10.1029/97JC01917

    Article  Google Scholar 

  • Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32(2) doi: 10.1029/2004GL021592

  • Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36(7), n/a–n/a, doi: 10.1029/2008GL037155

  • Levitus S et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39(10), L10603. doi:10.1029/2012GL051106

    Google Scholar 

  • Lombard A, Cazenave A, Le Traon P-Y, Ishii M (2005) Contribution of thermal expansion to present-day sea-level change revisited. Glob Planet Chang 47(1):1–16. doi:10.1016/j.gloplacha.2004.11.016

    Article  Google Scholar 

  • Lombard A, Garric G, Penduff T (2009) Regional patterns of observed sea level change: insights from a ¼° global ocean/sea-ice hindcast. Ocean Dyn 59(3):433–449. doi:10.1007/s10236-008-0161-6

    Article  Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific Decadal Oscillation. J Oceanogr 58(1):35–44. doi:10.1023/A:1015820616384

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

    Article  Google Scholar 

  • Marcos M, Amores A (2014) Quantifying anthropogenic and natural contributions to thermosteric sea level rise. Geophys. Res. Lett., 41(7) 2014GL059766, doi: 10.1002/2014GL059766

  • McGregor S, Holbrook NJ, Power SB (2007) Interdecadal sea surface temperature variability in the equatorial Pacific Ocean. Part I: the role of off-equatorial wind stresses and oceanic Rossby waves. J Clim 20(11):2643–2658. doi:10.1175/JCLI4145.1

    Article  Google Scholar 

  • McGregor S, Holbrook NJ, Power SB (2008) Interdecadal sea surface temperature variability in the equatorial pacific ocean. Part II: the role of equatorial/off-equatorial wind stresses in a hybrid coupled model. J Clim 21(17):4242–4256. doi:10.1175/2008JCLI2057.1

    Article  Google Scholar 

  • McGregor S, Gupta AS, England MH (2012) Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution*. J Clim 25(23) 8164–8176, doi: 10.1175/JCLI-D-12-00105.1

  • Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim 26(18):7298–7310. doi:10.1175/JCLI-D-12-00548.1

    Article  Google Scholar 

  • Merrifield MA (2011) A shift in western tropical Pacific sea level trends during the 1990s. J Clim 24(15):4126–4138. doi:10.1175/2011JCLI3932.1

    Article  Google Scholar 

  • Merrifield MA, Maltrud ME (2011) Regional sea level trends due to a Pacific trade wind intensification. Geophys Res Lett 38. doi: 10.1029/2011GL049576

  • Merrifield MA, Thompson PR, Lander M (2012) Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys Res Lett 39. doi: 10.1029/2012GL052032

  • Meyers G (1979) On the annual Rossby wave in the tropical North Pacific Ocean. J Phys Oceanogr 9(4):663–674. doi:10.1175/1520-0485

    Article  Google Scholar 

  • Meyssignac B, Salas y Melia D, Becker M, Llovel W, Cazenave A (2012) Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature? Clim Past 8(2):787–802. doi:10.5194/cp-8-787-2012

    Article  Google Scholar 

  • Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci. doi:10.1038/ngeo544

    Google Scholar 

  • Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33:435–446. doi:10.1080/01490419.2010.491031

    Article  Google Scholar 

  • Nidheesh AG, Lengaigne M, Vialard J, Unnikrishnan AS, Dayan H (2013) Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dyn 41(2):381–402. doi:10.1007/s00382-012-1463-4

    Article  Google Scholar 

  • Pedlosky J (2006) A history of thermocline theory. In: Jochum M, Murtugudde R (eds) Physical oceanography. Springer, New York, pp 139–152

    Chapter  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324. doi:10.1007/s003820050284

    Article  Google Scholar 

  • Rebert JP, Donguy JR, Eldin G, Wyrtki K (1985) Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. J Geophys Res Oceans 90(C6):11719–11725. doi:10.1029/JC090iC06p11719

    Article  Google Scholar 

  • Slangen ABA, Church JA, Zhang X, Monselesan D (2014) Detection and attribution of global mean thermosteric sea level change. Geophys Res Lett n/a–n/a, doi: 10.1002/2014GL061356

  • Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci, 5. doi: 10.1146/annurev-marine-121211-172406

  • Sverdrup HU (1947) Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern pacific. Proc Natl Acad Sci U S A 33(11):318–326

    Article  Google Scholar 

  • Swenson MS, Hansen DV (1999) Tropical Pacific Ocean mixed layer heat budget: the pacific cold tongue. J Phys Oceanogr 29(1):69–81. doi:10.1175/1520-0485(1999)029<0069:TPOMLH>2.0.CO;2

    Article  Google Scholar 

  • Thompson PR, Merrifield MA, Wells JR, Chang CM (2014) Wind-driven coastal sea level variability in the northeast Pacific. J Clim 27(12):4733–4751. doi:10.1175/JCLI-D-13-00225.1

    Article  Google Scholar 

  • Timmermann A, McGregor S, Jin F-F (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific*. J. Clim., 23(16), 4429–4437, doi: 10.1175/2010JCLI3519.1

  • Volkov DL, Larnicol G, Dorandeu J (2007) Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res. Oceans 112(C6), n/a–n/a, doi: 10.1029/2006JC003765

  • White W, Meyers G, Donguy JR, Pazan S (1985) Short-term climatic variability in the thermal structure of the Pacific Ocean during 1979–82. J Phys Oceanogr 15:917–935

    Article  Google Scholar 

  • Wunsch C, Ponte RM, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Clim 20(24):5889–5911. doi:10.1175/2007JCLI1840.1

    Article  Google Scholar 

  • Wyrtki K, Kendall R (1967) Transports of the Pacific equatorial countercurrent. J Geophys Res 72(8):2073–2076

    Article  Google Scholar 

  • Yang H, Wang F (2009) Revisiting the thermocline depth in the equatorial Pacific*. J. Clim., 22(13) 3856–3863. doi: 10.1175/2009JCLI2836.1

  • Zhang X, Church JA (2012) Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys Res Lett 39. doi: 10.1029/2012GL053240

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10(5):1004–1020. doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Palanisamy.

Additional information

Responsible Editor: Richard John Greatbatch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanisamy, H., Cazenave, A., Delcroix, T. et al. Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: the contribution of thermocline depth change and internal climate variability. Ocean Dynamics 65, 341–356 (2015). https://doi.org/10.1007/s10236-014-0805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0805-7

Keywords

Navigation