Ocean Dynamics

, Volume 65, Issue 2, pp 255–267 | Cite as

Climate change impact on North Sea wave conditions: a consistent analysis of ten projections

  • Iris GrabemannEmail author
  • Nikolaus Groll
  • Jens Möller
  • Ralf Weisse
Part of the following topical collections:
  1. Topical Collection on the 13th International Workshop on Wave Hindcasting and Forecasting in Banff, Alberta, Canada October 27 - November 1, 2013


Long-term changes in the mean and extreme wind wave conditions as they may occur in the course of anthropogenic climate change can influence and endanger human coastal and offshore activities. A set of ten wave climate projections derived from time slice and transient simulations of future conditions is analyzed to estimate the possible impact of anthropogenic climate change on mean and extreme wave conditions in the North Sea. This set includes different combinations of IPCC SRES emission scenarios (A2, B2, A1B, and B1), global and regional models, and initial states. A consistent approach is used to provide a more robust assessment of expected changes and uncertainties. While the spatial patterns and the magnitude of the climate change signals vary, some robust features among the ten projections emerge: mean and severe wave heights tend to increase in the eastern parts of the North Sea towards the end of the twenty-first century in nine to ten projections, but the magnitude of the increase in extreme waves varies in the order of decimeters between these projections. For the western parts of the North Sea more than half of the projections suggest a decrease in mean and extreme wave heights. Comparing the different sources of uncertainties due to models, scenarios, and initial conditions, it can be inferred that the influence of the emission scenario on the climate change signal seems to be less important. Furthermore, the transient projections show strong multi-decadal fluctuations, and changes towards the end of the twenty-first century might partly be associated with internal variability rather than with systematic changes.


Ocean waves Climate change Extremes Ensemble North Sea 



The authors are thankful to A. Behrens for assistance with theWAM model and to B. Gardeike for assistance with the graphics. This investigation was partly supported in the context of the joint project AKU¨ ST (Changes in the coastal climate - evaluation of alternative strategies in coastal protection, F¨orderkennzeichen VWZN2455, Az. 99-22/07) and in the context of the Governmental Research Programme KLIWAS (Impacts of Climate Change on Waterways and Navigation – Development of Adaptation Options).


  1. Andrade C, Pires HO, Taborda R, Freitas MC (2007) Projecting future changes in wave climate and coastal response in Portugal by the end of the 21st century. J Coast Res 50:257–263Google Scholar
  2. Brown J, Wolf J, Souza AJ (2011) Past to future extreme events in Liverpool Bay: Model projections from 1960-2100. Clim Chang 111:365–391. doi: 10.1007/s10584-011-0145-2 CrossRefGoogle Scholar
  3. Caires S, Swail V, Wang X (2006) Projection and analysis of extreme wave climate. J Climate 19:5581–5605. doi: 10.1175/JCLI3918.1 CrossRefGoogle Scholar
  4. Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen KM, Hebestadt I, Rinke A (2007) The HIRHAM Regional Climate Model Version 5 (beta). Technical Report. Danish Meteorological Institute 06–17:22Google Scholar
  5. Debernard J, Røed L (2008) Future wind, wave and storm surge climate in the Northern Seas: a revisit. TELLUS A 60(3):427–438. doi: 10.1111/j.1600-0870.2008.00312.x CrossRefGoogle Scholar
  6. Dobrynin M, Murawsky J, Yang S (2012) Evolution of the global wind wave climate in CMIP5 experiments. Geophys Res Lett 39:18. doi: 10.1029/2012GL052843
  7. Fan Y, Held IM, Lin S, Wang XL (2013) Ocean warming effect on surfave gravity wave climate change for the end of the twenty-first century. J Climate 26:6046–6066. doi: 10.1175/JCLI-D-12-00410.1 CrossRefGoogle Scholar
  8. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Jones TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–166CrossRefGoogle Scholar
  9. Gaslikova L, Grabemann I, Groll N (2013) Changes in North Sea storm surge conditions for four transient future climate realizations. Nat HazardsGoogle Scholar
  10. Grabemann I, Weisse R (2008) Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dyn 58:199–212. doi: 10.1007/s10236-008-0141-x CrossRefGoogle Scholar
  11. Groll N, Grabemann I, Gaslikova L (2014a) North Sea wave conditions: an analysis of four transient future climate realizations. Ocean Dyn 64:1–12. doi: 10.1007/s10236-013-0666-5 CrossRefGoogle Scholar
  12. Groll N, Weisse R, Behrens A, Günther H, Möller J (2014b) Berechnung von Seegangsszenarien für die Nordsee. Bundesanstalt für Gewässerkunde - KLIWAS Koordination (Hrsg.), Koblenz, Germany. doi: 10.5675/Kliwas_64/2014_Seegangsszenarien
  13. Gulev S, Grigorieva 4 (2004) Last century changes in ocean wind wave height from global visual wave data. Geophys Res Lett 31(L24601). doi: 10.1029/2004GL021040
  14. Hemer MA, Church JA, Hunter JR (2010) Variability and trends in the directional wave climate of the Southern Hemispere. Int J Climatol 30(4):475–491Google Scholar
  15. Hemer MA, Katzfey J, Trenham C (2012a) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emssion scenario. Ocean Model 70:221–245. doi: 10.1016/j.ocemod.2012.09.008 CrossRefGoogle Scholar
  16. Hemer MA, Wang XL, Weisse R, Swail VR (2012b) Advancing Wind-Waves Climate Science The COWCLIP Project. Bull Am Met Soc 93:791–796. doi: 10.1175/BAMS-D-11-00184.1 CrossRefGoogle Scholar
  17. Hemer MA, Fan Y, Mori N, Semedo A, Wang XL (2013) Projected changes in wave climate from a multi-model ensemble. Nat Clim Chang 3:471–476. doi: 10.1038/NCLIMATE1791 CrossRefGoogle Scholar
  18. Hollweg H, Böhm U, Fast I, Hennemuth B, Keuler K, Keup-Thiel E, Lautenschlager M, Legutke S, Radtke K, Rockel B, Schubert M, Will A, Woldt M, Wunram C (2008) Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. Technical report 3, Support for Climate- and Earth System Research at the Max Planck Institute for Meteorology, ISSN, 1619–2257Google Scholar
  19. Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, Johnson C (eds) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  20. Jacob D, Bähring L, Christensen OB, Christensen JH, Castro de M, Déqué Mn Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellströrm, R, Lenderink G, Rockel B, Sánchez E, Schär C, Senevirate S, Sornot S, Ulden van A, Hurk van den B (2007) An intercomparison of regional climate models for Europe: Design of the experiments and model performance. Clim Chang 81, Supplement 1:31–52CrossRefGoogle Scholar
  21. Kushnir Y, Cardone V, Greenwood J, Cane M (1997) The recent increase in North Atlantic wave heights. J Clim 10:2107–2113CrossRefGoogle Scholar
  22. Lionello P, Cogo S, Galatin MB, Sanna A (2008) The Mediterranean surface wave climate inferred from future scenario simulations. Global Planet Chang 63(203):152–162CrossRefGoogle Scholar
  23. Lowe JA, Howard TP, Pardaens A, Tinker J, Holt J, Wakelin S, Milne G, Leake J, ans K Horsburgh JW, Reeder T, Jenkins G, Ridley J, Dye S, Bradley S (2009) UK Climate Projections science report: Marine and coastal projections. Met Office Hadley Centre, Exeter, UK, ISBN 978-1-906360-03-0Google Scholar
  24. Marsland S, Haak H, Jungclaus J, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  25. Mori N, Yasuda T, Mase H, Tom T, Oku Y (2010) Projections of extreme wave climate change under global warming. Hydrol Res Lett 4:15–19CrossRefGoogle Scholar
  26. Nakicenovic N, Swart R (eds) (2000) Special Report of the Intergovernmental Panel on Climate Change on Emission Scenarios. Cambridge University Press, United Kingdom, [Summary available online at]
  27. Pinto J, Ulbrich U, Leckebusch G, Spangehl T, Reyers M, Zacharis S (2007) Changes in the storm track and cyclone activity in the three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:195–210. doi: 10.1007/s00,382--007--0230--4 CrossRefGoogle Scholar
  28. Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: Regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31. doi: 10.1007/s00382-003-0365-x CrossRefGoogle Scholar
  29. Rockel B, Will A, Hense A (eds.) (2008) Special issue Regional climate modeling with COSMO-CLM (CCLM), 17. Met. ZeitschriftGoogle Scholar
  30. Röckner E, Bengtsson L, Feichter J, Lelieveld J, Rodhe H (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the trophospheric sulfer cycle. J Climate 12:3004–3032CrossRefGoogle Scholar
  31. Röckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta, M, Hagemann, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlesem U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. part i: model description. MPI - rep 349, Max Planck Institute for MeteorologyGoogle Scholar
  32. Rummukainen M, Räisänen J, Bringfelt B, Ullerstig A, Omstedt A, Willén U Hansson U, Jones C (2004) A regional climate model for Northern Europe: Model description and results from the downscaling of two GCM control simulations. Clim Dyn 17:339–359CrossRefGoogle Scholar
  33. Semedo A, Weisse R, Behrens A, Sterl A, Bengtsson L, Günther H (2013) Projection of global wave climate change toward the end of the twenty-first century. J Climate 26:8269–8288CrossRefGoogle Scholar
  34. Sterl A, Caires S (2005) Climatology, variability and extremes of ocean waves -The web-based KNMI/ERA-40 wave atlas. Int J Climatol:963–977. doi: 10.1002/joc.1175
  35. Storch von H, Zwiers F (2012) Testing ensembles of climate change scenarios for “statistical significance”. Clim Chang 17:1–9. doi: 10.1007/s10584-012-0551-0 Google Scholar
  36. Tebaldi C, Knutti (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A 365:20532075. doi: 10.1098/rsta.2007.2076 CrossRefGoogle Scholar
  37. WAMDI-Group (1988) The WAM model — a third generation ocean wave prediction model. J Phys Oceanogr 18:1776–1810Google Scholar
  38. Wang XL, Swail V (2006) Climate change signal and uncertainty in projections of ocean wave heights. Ocean Dyn 26:109–126. doi: 10.1007/s00382-005-0080-x Google Scholar
  39. Wang XL, Feng, Swail V (2014) Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. GRL:109–126. doi: 10.1002/2013GL058650
  40. Weisse R, Günther H (2007) Wave climate and long-term changes for the southern north sea obtained from a high-resolution hindcast 1958–2002. Ocean Dyn 57:161–172. doi: 10.1007/s10236-006-0094-x CrossRefGoogle Scholar
  41. Winter de RC, Sterl A, de Vries JW, Weber SL, Ruessink G, The effect of climate change on extreme waves in front of the dutch coast (2012). Ocean Dyn 62:1139–1152. doi: 10.1007/s10236-012-0551-7 CrossRefGoogle Scholar
  42. Winter de RC, Sterl A, Ruessink G (2013) Wind extremes in the North Sea Basin under climate change: an ensemble study of 12 CMIP5 GCMs. J Geophys Res Atmos 118:1601–1612. doi: 10.1002/jgrd.50147 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Iris Grabemann
    • 1
    Email author
  • Nikolaus Groll
    • 1
  • Jens Möller
    • 2
  • Ralf Weisse
    • 1
  1. 1.Institute for Coastal Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal ResearchGeesthachtGermany
  2. 2.Bundesamt für Seeschifffahrt und HydrographieHamburgGermany

Personalised recommendations