Skip to main content

Advertisement

Log in

Variations in turbulent kinetic energy at a point source submarine groundwater discharge in a reef lagoon

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The influence of sea level variations due to tides and wave setup on turbulent kinetic energy (TKE) was observed at a point source submarine groundwater discharge in a fringing coral reef lagoon. Tidal and wave setup variations modulated speed, TKE, TKE dissipation, and water temperature and salinity at the buoyant jet. The primary driver of jet TKE and speed variations was tides, while wave setup was a minor contributor. An inverse relationship between surface elevation and TKE was explained with an exponential equation based on sea level variations. During low tides, peak jet speeds (up to 0.3 m s−1) and TKE per unit mass (up to 0.4 m2 s−2) were observed. As high tide approached, the jet produced minimum TKE of ~0.003 m2 s−2 and TKE dissipation ranged from 2 to 8×10−4 m2 s−3. This demonstrated the sensitivity of the jet discharge to tides despite the small tidal range (<20 cm). Jet temperatures and salinities displayed semidiurnal oscillations with minimum salinity and temperature values during maximum discharge. Jet salinities increased throughout low tides while temperatures decreased. This pattern suggested the jet conduit was connected to a stratified cavity within the aquifer containing cool fresh water over cool salty water. As low tides progressed, jet outflow increased in salinity because of the mixing within the conduit, while lower jet temperatures suggested water coming from further or deeper in the aquifer. The presence of such a cavity has been recently confirmed by divers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnott KD, Valle-Levinson A, Luther M (2012) Friction dominated exchange in a Florida estuary. Estuar Coast Shelf Sci 113:248–258. doi:10.1016/j.ecss.2012.07.034

    Article  Google Scholar 

  • Back W, Hanshaw BB (1970) Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan. J Hydrol 10:330–368. doi:10.1016/0022-1694(70)90222-2

    Article  Google Scholar 

  • Beddows PA, Smart PL, Whitaker FF, Smith SL (2007) Decoupled fresh–saline groundwater circulation of a coastal carbonate aquifer: spatial patterns of temperature and specific electrical conductivity. J Hydrol 346:18–32. doi:10.1016/j.jhydrol.2007.08.013

    Article  Google Scholar 

  • Bricker JD, Monismith SG (2007) Spectral wave-turbulence decomposition. J Atmos Ocean Technol 24:1479–1487. doi:10.1175/JTECH2066.1

    Article  Google Scholar 

  • Charvet G (2009) Exploration, modeling and management of groundwater resources in northern Quintana Roo. Dissertation, Technical University of Denmark, Mexico

    Google Scholar 

  • Chen CJ, Rodi W (1980) Vertical turbulent buoyant jets: a review of experimental data. Pergamon, Oxford

    Google Scholar 

  • Coronado C, Candela J, Iglesias-Prieto R, Sheinbaum J, López M, Ocampo-Torres FJ (2007) On the circulation in the Puerto Morelos fringing reef lagoon. Coral Reefs 26:149–163. doi:10.1007/s00338-006-0175-9

    Article  Google Scholar 

  • Emery WJ, Thomson RE (1997) Data analysis methods in physical oceanography. Elsevier Science, New York

    Google Scholar 

  • Enriquez C, Mariño-Tapia I, Valle-Levinson A, Torres-Freyermuth A, Silva-Casarín R (2012) Mechanisms driving the circulation in a fringing reef lagoon: a numerical study. Book of abstracts of the physics of estuaries and coastal seas symposium. Manhattan, NY

    Google Scholar 

  • Expósito-Díaz G, Monreal-Gómez MA, Valle-Levinson A, Salas-de-León DA (2013) Tidal variations of turbulence at a spring discharging to a tropical estuary. Geophys Res Lett 40:898–903. doi:10.1002/grl.50194

    Article  Google Scholar 

  • Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Chang 2:342–345. doi:10.1038/nclimate1413

    Article  Google Scholar 

  • Ford DC, Williams PW (1989) Karst geomorphology and hydrology. University Press, Cambridge

    Book  Google Scholar 

  • Friedrichs CT (2010) Barotropic tides in channelized estuaries. In: Valle-Levinson A (ed) Contemporary issues in estuarine physics. University Press, Cambridge, pp 27–61

    Chapter  Google Scholar 

  • Ganju NK (2011) A novel approach for direct estimation of fresh groundwater discharge to an estuary. Geophys Res Lett 38, L11402. doi:10.1029/2011GL047718

    Article  Google Scholar 

  • Hu C, Muller-Karger FE, Swarzenski PW (2006) Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys Res Lett 33, L11601. doi:10.1029/2005GL025449

    Article  Google Scholar 

  • Huntley DA (1988) A modified inertial dissipation method for estimating sea bed stresses at low Reynolds numbers, with application to wave/current boundary layer measurements. J Phys Oceanogr 18:339–346. doi:10.1175/1520-0485(1988)018<0339:AMIDMF>2.0.CO;2

    Article  Google Scholar 

  • IPCC (2013) Working group I contribution to the IPCC fifth assessment report climate change 2013: the physical science basis. Summary for policymakers. http://www.climatechange2013.org/images/uploads/WGIAR5-SPM_Approved27Sep2013.pdf Accessed September 2013

  • Kim G, Hwang DW (2002) Tidal pumping of groundwater into the coastal ocean revealed from submarine 222Rn and CH4 monitoring. Geophys Res Lett 29:23-1–23-4. doi:10.1029/2002GL015093

    Google Scholar 

  • Li L, Barry DA, Stagnitti F, Parlange JY (1999) Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour Res 35:3253–3259. doi:10.1029/1999WR900189

    Article  Google Scholar 

  • Lowe RJ, Falter JL, Monismith SG, Atkinson MJ (2009) Wave-driven circulation of a coastal reef-lagoon system. J Phys Oceanogr 39:873–893. doi:10.1175/2008JPO3958.1

    Article  Google Scholar 

  • Lugo-Fernández A, Roberts HH, Wiseman WJ Jr, Carter BL (1998) Water level and currents of tidal and infragravity periods at Tague Reef, St. Croix (USVI). Coral Reefs 17:343–349. doi:10.1007/s003380050137

    Article  Google Scholar 

  • MacDonald DG, Geyer WR (2004) Turbulent energy production and entrainment at a highly stratified estuarine front. J Geophys Res 109:C05004. doi:10.1029/2003JC002094

    Google Scholar 

  • Merino M, Czitrom S, Jordán E, Martin E, Thomé P, Moreno O (1990) Hydrology and rain flushing of the Nichupté Lagoon System, Cancún, México. Estuar Coast Shelf Sci 30:223–237. doi:10.1016/0272-7714(90)90049-W

    Article  Google Scholar 

  • Monismith SG (2010) Mixing in estuaries. In: Valle-Levinson A (ed) Contemporary issues in estuarine physics. University Press, Cambridge, pp 145–185

    Chapter  Google Scholar 

  • Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Lett Nat 380:612–614. doi:10.1038/380612a0

    Article  Google Scholar 

  • Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125. doi:10.1016/S0304-4203(99)00014-6

    Article  Google Scholar 

  • Moore WS, Wilson AM (2005) Advective flow through the upper continental shelf driven by storms, buoyancy, and submarine groundwater discharge. Earth Planet Sci Lett 235:564–576. doi:10.1016/j.epsl.2005.04.043

    Article  Google Scholar 

  • Null KA, Knee KL, Crook ED, de Sieyes NR, Rebolledo-Vieyra M, Hernández-Terrones L, Paytan A (2014) Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula. Cont Shelf Res 77:38–50. doi:10.1016/j.csr.2014.01.011

    Article  Google Scholar 

  • Pawlowicz R (2010) What every oceanographer needs to know about TEOS-10 (The TEOS-10 Primer). http://www.teos-10.org/pubs/TEOS-10_Primer.pdf. Accessed 06 June 2012

  • Peterson RN, Burnett WC, Glenn CR, Johnson AG (2009) Quantification of point-source groundwater discharges to the ocean from the shoreline of the Big Island, Hawaii. Limnol Oceanogr 54:890–904. doi:10.4319/lo.2009.54.3.0890

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. University Press, Cambridge

    Book  Google Scholar 

  • Precht E, Huettel M (2003) Advective pore-water exchange driven by surface gravity waves and its ecological implications. Limnol Oceanogr 48:1674–1684. doi:10.4319/lo.2003.48.4.1674

    Article  Google Scholar 

  • Roberts HH, Wilson PA, Lugo-Fernández A (1992) Biologic and geologic responses to physical processes: examples from modern reef systems of the Caribbean-Atlantic region. Cont Shelf Res 12:809–834. doi:10.1016/0278-4343(92)90046-M

    Article  Google Scholar 

  • Rotzoll K, El-Kadi AI (2008) Estimating hydraulic properties of coastal aquifers using wave setup. J Hydrol 353:201–213. doi:10.1016/j.jhydrol.2008.02.005

    Article  Google Scholar 

  • Shoemaker WB, Cunningham KJ, Kuniansky EL, Dixon J (2008) Effects of turbulence on hydraulic heads and parameter sensitivities in preferential groundwater flow layer. Water Resour Res 44, W03501. doi:10.1029/2007WR006601

    Google Scholar 

  • Simpson JH, Fisher NR, Wiles P (2004) Reynolds stress and TKE production in an estuary with a tidal bore. Estuar Coast Shelf Sci 60:619–627. doi:10.1016/j.ecss.2004.03.006

    Article  Google Scholar 

  • Smith CG, Cable JE, Martin JB (2008) Episodic high intensity mixing events in a subterranean estuary: effects of tropical cyclones. Limnol Oceanogr 53:666–674. doi:10.4319/LO.2008.53.2.0666

    Article  Google Scholar 

  • Stieglitz T (2005) Submarine groundwater discharge into the near-shore zone of the Great Barrier Reef, Australia. Mar Pollut Bull 51:51–59. doi:10.1016/j.marpolbul.2004.10.055

    Article  Google Scholar 

  • Taniguchi M (2002) Tidal effects on submarine groundwater discharge into the ocean. Geophys Res Lett 29:2-1–2-3. doi:10.1029/2002GL014987

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Process 16:2115–2129. doi:10.1002/hyp.1145

    Article  Google Scholar 

  • Torres-Freyermuth A, Mariño-Tapia I, Coronado C, Salles P, Medellín G, Pedrozo-Acuña A, Silva R, Candela J, Iglesias-Prieto R (2012) Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon. Nat Hazards Earth Syst Sci 12:3765–3773. doi:10.5194/nhess-12-3765-2012

    Article  Google Scholar 

  • Uchiyama Y, Nadaoka K, Rölke P, Adachi K, Yagi H (2000) Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach. Water Resour Res 36:1467–1479. doi:10.1029/2000WR900029

    Article  Google Scholar 

  • Valiela I, Costa J, Foreman K, Teal JM, Howes B, Aubrey D (1990) Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10:177–197. doi:10.1007/BF00003143

    Article  Google Scholar 

  • Valle-Levinson A, Mariño-Tapia I, Enriquez C, Waterhouse AF (2011) Tidal variability of salinity and velocity fields related to intense point-source submarine groundwater discharges into the coastal ocean. Limnol Oceanogr 56:1213–1224. doi:10.4319/lo.2011.56.4.1213

    Article  Google Scholar 

  • Vera I, Mariño-Tapia I, Enriquez C (2012) Effects of drought and subtidal sea level variability on salt intrusion in a coastal karst aquifer. Mar Freshwat Res 63:485–493. doi:10.1071/MF11270

    Article  Google Scholar 

  • Walter RK, Nidzieko NJ, Monismith SG (2011) Similarity scaling of turbulence spectra and cospectra in a shallow tidal flow. J Geophys Res 116, C10019. doi:10.1029/2011JC007144

    Article  Google Scholar 

  • Webster IT, Norquay SJ, Ross FC, Wooding RA (1996) Solute exchange by convection within estuarine sediments. Estuar Coast Shelf Sci 42:171–183. doi:10.1006/ecss.1996.0013

    Article  Google Scholar 

  • Werner AD, Simmons CT (2009) Impact of sea level rise on sea water intrusion in coastal aquifers. Groundwater 47:197–204. doi:10.1111/j.1745-6584.2008.00535.x

    Article  Google Scholar 

  • Wolanski E (1983) Tides on the northern Great Barrier Reef continental shelf. J Geophys Res 88:5953–5959. doi:10.1029/JC088iC10p05953

    Article  Google Scholar 

  • Xin P, Robinson C, Li L, Barry DA, Bakhtyar R (2010) Effects of wave forcing on a subterranean estuary. Water Resour Res 46, W12505. doi:10.1029/2010WR009632

    Google Scholar 

  • Zektser IS, Everett LG (2000) Groundwater and the environment: applications for the global community. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgments

We thank Edgar Escalante, Francisco Ruiz, and Roberto Iglesias from the Puerto Morelos station of the Instituto de Ciencias de Mar y Limnología of Universidad Nacional Autónoma de México for providing bathymetric and meteorological data and for the support received during fieldwork and Emanuel Sanchez for the support in field work. SMP gratefully acknowledges support from the National Science Foundation’s Bridge to the Doctorate program. This research was funded by National Science Foundation projects OCE-0825876 & OCE-1325227 and Consejo Nacional de Ciencia y Tecnología, México project #84847.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina M. Parra.

Additional information

Responsible Editor: Bob Chant

This article is part of the Topical Collection on Physics of Estuaries and Coastal Seas 2012

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra, S.M., Mariño-Tapia, I., Enriquez, C. et al. Variations in turbulent kinetic energy at a point source submarine groundwater discharge in a reef lagoon. Ocean Dynamics 64, 1601–1614 (2014). https://doi.org/10.1007/s10236-014-0765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0765-y

Keywords

Navigation