Skip to main content
Log in

Inversion of swell frequency from a 1-year HF radar dataset collected in Brittany (France)

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

This article presents long period ocean wave (swell) frequencies inverted from a 13-month dataset of high-frequency (HF) phased array radars and an assessment of these estimates by comparison with WAVEWATCH III model data. The method of swell frequency inversion from high-frequency radar sea echo Doppler spectra is described. Radar data were collected from a two-site HF Wellen Radar (WERA) radar system on the west coast of Brittany (France) operating at 12 MHz. A standard beam-forming processing technique has been used to obtain Doppler spectra of processed radar cells. Swell frequencies are obtained from the frequencies of particular spectral peaks of the second-order continuum in hourly averaged Doppler spectra. The data coverage of effective Doppler spectra considered for swell frequency estimates shows the influence of islands and shallow water effects. Swell estimates from both radar stations are in good agreement. The comparison of radar-derived results to WAVEWATCH III (WW3) estimates shows that radar measurements agree quite well with model results. The bias and standard deviation between two estimates are very small for swells with frequency less than 0.09 Hz (period >11 s), whereas radar estimates are generally lower than model estimates for shorter swells, along with higher standard deviation. Statistical analysis suggests that radar measurement uncertainty explains most of the difference between radar and model estimates. For each swell event, time series of frequency exhibits a quasi-linear frequency increase which is associated with the dispersive property of wave phase velocity. The use of swell frequency estimates from both radars on common radar cells only slightly increases the accuracy of swell frequency measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ardhuin F, Marié L, Rascle N, Forget P, Roland A (2009) Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J Phys Oceanogr 39:2820–2838

    Article  Google Scholar 

  • Ardhuin F, Rogers E, Babanin AV et al (2010) Semi-empirical dissipation source functions for wind-wave models: part I, definition, calibration and validation. J Phys Oceanogr 40:1917–1941

    Article  Google Scholar 

  • Barrick DE (1972a) First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans Antennas Propag 20:2–10

    Article  Google Scholar 

  • Barrick DE (1972b) Remote sensing of sea state by radar. In: Derr VE (ed) Remote sensing of the troposphere. US Government Printing Office, Washington

    Google Scholar 

  • Barrick DE (1977) Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Sci 12(3):415–424

    Article  Google Scholar 

  • Barrick DE (1980) Accuracy of parameter extraction from sample-averaged sea-echo Doppler spectra. IEEE Trans Antennas Propag 28:1–11

    Article  Google Scholar 

  • Breivik O, Saetra O (2001) Real time assimilation of HF radar currents into a coastal ocean model. J Mar Syst 28:161–182. doi:10.1016/S0924-7963(01)00002-1

    Article  Google Scholar 

  • Broche P (1979) Estimation du spectre directionnel des vagues par radar decametrique coherent. AGARD Conference on special topics in HF propagation, Proc. Lisbon, 28 May-1 June, 1979. AGARD-CP-263.

  • Broche P, Forget P (1993) Shallow water waves observed by a VHF groundwave Doppler radar. Int J Remote Sens 14:2301–2314

    Article  Google Scholar 

  • Crombie DD (1955) Doppler spectrum of sea echo at 13.56 Mc./s. Nature 175:681–682. doi:10.1038/175681a0

    Article  Google Scholar 

  • Forget P (1985) The wave field dynamics inferred from HF radar sea-echo. The ocean surface, Eds Toba Y and Mitsuyasu H, Reidel Publishing Co., 257–262

  • Forget P, Broche P, de Maistre JC, Fontanel A (1981) Sea state frequency features observed by ground wave HF Doppler radar. Radio Sci 16(5):917–925. doi:10.1029/RS016i005p00917

    Article  Google Scholar 

  • Fujii S, Heron ML, Kim K et al (2013) An overview of developments and applications of oceanographic radar networks in Asia and Oceania countries. Ocean Sci J 48(1):69–97

    Article  Google Scholar 

  • Grosdidier S, Forget P, Barbin Y, Guerin CA (2014) HF bistatic ocean Doppler spectra: simulation versus experimentation. IEEE Trans Geosci Remote Sens 52(4):2138–2148. doi:10.1109/TGRS.2013.2258352

    Article  Google Scholar 

  • Gurgel KW, Antonischki G, Essen HH, Schlick T (1999) Wellen radar (WERA): a new ground-wave based HF radar for ocean remote sensing. Coast Eng 37:219–234

    Article  Google Scholar 

  • Gurgel KW, Essen HH, Schlic T (2006) An empirical method to derive ocean waves from second-order Bragg scattering: prospects and limitations. IEEE J Oceanic Eng 31:804–811. doi:10.1109/JOE.2006.886225

    Article  Google Scholar 

  • Hanson JL, Phillips OM (2001) Automated analysis of ocean surface directional wave spectra. J Atmos Ocean Technol 18:277–293

    Article  Google Scholar 

  • Hasselmann K (1971) Determination of ocean-wave spectra from Doppler radio return from the sea surface. Nat Phys Sci 229:16–17. doi:10.1038/physci229016a0

    Article  Google Scholar 

  • Hildebrand PH, Sekhon RS (1974) Objective determination of the noise level in Doppler spectra. J Appl Meteorol 13:808–811

    Article  Google Scholar 

  • Howell R, Walsh J (1993) Measurement of ocean wave spectra using narrow-beam HF radar. IEEE J Oceanic Eng 18:296–305. doi:10.1109/JOE.1993.236368

    Article  Google Scholar 

  • Ivonin DV, Shrira VI, Broche P (2006) On the singular nature of the second-order peaks in HF radar sea echo. IEEE J Oceanic Eng 31(4):751–767. doi:10.1109/JOE.2006.886080

    Article  Google Scholar 

  • Kim SY, Terrill EJ, Cornuelle BD et al (2011) Mapping the U.S. west coast surface circulation: a multiyear analysis of high-frequency radar observations. J Geophys Res 116:C03011. doi:10.1029/2010JC006669

    Google Scholar 

  • Lipa BJ (1978) Inversion of second-order radar echoes from the sea. J Geophys Res 83(C2):959–962. doi:10.1029/JC083iC02p00959

    Article  Google Scholar 

  • Lipa BJ, Barrick DE (1986) Extraction of sea state from HF radar sea echo: mathematical theory and modeling. Radio Sci 21(1):81–100. doi:10.1029/RS021i001p00081

    Article  Google Scholar 

  • Lipa B, Nyden B (2005) Directional wave information from the SeaSonde. IEEE J Oceanic Eng 30:221–231. doi:10.1109/JOE.2004.839929

    Article  Google Scholar 

  • Lipa BJ, Barrick DE, Maresca JW Jr (1981) HF radar measurements of long ocean waves. J Geophys Res 86(C5):4089–4102. doi:10.1029/JC086iC05p04089

    Article  Google Scholar 

  • Marmain J, Molcard A, Forget P, Barth A (2014) Assimilation of HF radar surface currents to optimize forcing in the North Western Mediterranean sea. Nonlinear Proc Geophys, accepted

  • Muller H, Blanke B, Dumas F, Mariette V (2010) Identification of typical scenarios of the surface Lagrangian residual circulation in the Iroise Sea. J Geophys Res 115:C07008. doi:10.1029/2009JC005834

    Google Scholar 

  • Paduan JD, Shulman I (2004) HF radar data assimilation in the Monterey Bay area. J Geophys Res 109:C07S09. doi:10.1029/2003JC001949

    Google Scholar 

  • Portilla J, Ocampo-Torres FJ, Monbaliu J (2009) Spectral partitioning and identification of wind sea and swell. J Atmos Ocean Technol 26:107–122

    Article  Google Scholar 

  • Sentchev A, Forget P, Barbin Y, Yaremchuk M (2013) Surface circulation in the Iroise Sea (W. Brittany) from high resolution HF radar mapping. J Mar Syst 109–110(suppl):S153–S168. doi:10.1016/j.jmarsys.2011.11.024

  • Shay LK, Martinez-Pedraja J, Cook TM, Haus BK, Weisberg RH (2007) High-frequency radar mapping of surface currents using WERA. J Atmos Ocean Technol 24:484–503

    Article  Google Scholar 

  • Siddons LA, Wyatt LR, Wolf J (2009) Assimilation of HF radar data into the SWAN wave model. J Mar Syst 77(3):312–324. doi:10.1016/j.jmarsys.2007.12.017

    Article  Google Scholar 

  • Tolman HL (2008) A mosaic approach to wind wave modeling. Ocean Model 25:35–47. doi:10.1016/j.ocemod.2008.06.005

    Article  Google Scholar 

  • Wyatt LR (1986) The measurement of the ocean wave directional spectrum from HF radar Doppler spectra. Radio Sci 21(3):473–485

    Article  Google Scholar 

  • Wyatt LR (1990) A relaxation method for integral inversion applied to HF radar measurement of the ocean wave directional spectrum. Int J Remote Sens 11:1481–1494. doi:10.1080/01431169008955106

    Article  Google Scholar 

  • Zhao J, Chen X, Hu W, Chen J, Guo M (2011) Dynamics of surface currents over Qingdao coastal waters in August 2008. J Geophys Res 116:C10020. doi:10.1029/2011JC006954

    Article  Google Scholar 

Download references

Acknowledgments

W. Wang acknowledges the fellowship supported by China Scholarship Council (CSC). Radar data were kindly provided by Service Hydrographique et Océanographique de la Marine (SHOM), thanks to the projects Previmer and EPIGRAM (funded under contract ANR-08-BLAN-0330). WAVEWATCH III wave model data was provided by the IOWAGA project funded by the ERC under grant number 240009. C. Guan appreciates the support from the Ministry of Science and Technology of China (No. 2011BAC03B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weili Wang.

Additional information

Responsible Editor: Birgit Andrea Klein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Forget, P. & Guan, C. Inversion of swell frequency from a 1-year HF radar dataset collected in Brittany (France). Ocean Dynamics 64, 1447–1456 (2014). https://doi.org/10.1007/s10236-014-0759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0759-9

Keywords

Navigation