Skip to main content
Log in

Bathymetric control of surf zone retention on a rip-channelled beach

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Simulations from a numerical model address the impact of nearshore morphology on surf zone retention on, open coast, rip-channelled beaches exposed to shore-normal waves. In the model, rip channels are regularly spaced alongshore with a given spacing λ. For a given reference case bathymetry (λ= 200 m), rip current circulations retain floating material at a hourly rate R of about 80 % which is in line with most existing field and laboratory studies in similar settings. The influence of a surf zone rip-channel morphology on surf zone retention is evaluated by a number of morphologic parameters. Results show that rip spacing is important. The ratio of the surf zone width X s to rip spacing λ controls surf zone retention with R rapidly increasing with increasing X s /λ up to a threshold of about 1 above which R levels off to become asymptotic to 100 %. The impact of the presence of a rip head bar is profound but nonlinear. The onset of wave breaking across the rip head bar drives a weak seaward located circulation providing major pathways for surface water exiting the surf zone compartment. Additional simulations suggest that alongshore variations in the offshore bathymetry are important. Patterns in the wave field enforced by wave refraction and potentially wave breaking across offshore bathymetric anomalies can provide a conduit for transporting floating material out of the surf zone and into the inner shelf region. This has major implications for surf zone flushing by inner-bar rips on multiple-barred beaches and on beaches facing bathymetric anomalies on the inner shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Austin M, Scott TM, Russell PE, Masselink G (2013) Rip current prediction: development, validation and evaluation of an operational tool. J Coast Res 29(2):283–300

    Article  Google Scholar 

  • Austin M, Masselink G, Scott TM, Russell PE (2014) Water-level control on macro-tidal rip currents. Cont Shelf Res 75:28–40

    Article  Google Scholar 

  • Bowen AJ (1969) Rip currents: 1. Theoretical investigations. J Geophys Res 74:5479–5490

    Article  Google Scholar 

  • Brander RW (1999) Field observations on the morphodynamic evolution of a low-energy rip current system. Mar Geol 157:199–217

    Article  Google Scholar 

  • Brander RW, Dominey-Howes D, Champion C, Del Vecchio O, Brighton B (2013) Brief communication: a new perspective on the Australian rip current hazard. Nat Hazards Earth Sci Syst Sci 13:1687–1690

    Article  Google Scholar 

  • Bruneau N, Bonneton P, Castelle B, Pedreros R (2011) Modeling rip current circulations and vorticity in a high-energy meso-macrotidal environment. J Geophys Res 116(C07026). doi:10.1029/2010JC006693

  • Bruneau N, Bertin X, Castelle B, Bonneton P (2014) Tide-induced flow signature in rip currents on a meso-macrotidal beach. Ocean Model 74:53–59

    Article  Google Scholar 

  • Castelle B, Coco G (2012) The morphodynamics of rip channels on embayed beaches. Cont Shelf Res 43:10–23. doi:10.1016/j.csr.2012.04.010

    Article  Google Scholar 

  • Castelle B, Coco G (2013) Surf zone flushing on embayed beaches. Geophys Res Lett 40:1–5. doi:10.1002/grl.50485

    Article  Google Scholar 

  • Castelle B, Michallet H, Marieu V, Leckler F, Dubardier B, Lambert A, Berni C, Bonneton P, Bartheĺeḿy E, Bouchette F (2010) Laboratory experiment on rip current circulations over a moveable bed: drifter measurements. J Geophys Res 115(C12008). doi:10.1029/2010JC006343

  • Castelle B, Michallet H, Marieu V, Bonneton P (2011) Surf zone retention in a laboratory rip current. J Coastal Res SI 64:50– 54

    Google Scholar 

  • Castelle B, Marieu V, Coco G, Bonneton P, Bruneau N, Ruessink BG (2012) On the impact of an offshore bathymetric anomaly on surfzone rip channels. J Geophys Res 117(F01038). doi:10.1029/2011JF002141

  • Coco G, Murray AB, Green MO (2007) Sorted bed forms as self-organized patterns: 1. Model development. J Geophys Res 112(F03015). doi:10.1029/2006JF000665

  • Dalrymple RA (1975) A mechanism for rip current generation on an open coast. J Geophys Res 80:3485–3487

    Article  Google Scholar 

  • Dalrymple RA, MacMahan JH, Reniers AJHM, Nelko V (2011) Rip currents. Ann Rev Fluid Mech 43:551–581. doi:10.1146/annurev-fluid-122109-160733

    Article  Google Scholar 

  • Drønen N, Karunarathna H, Fredsøe J, Sumer BM, Deigaard R (2002) An experimental study of rip channel flow. Coast Eng 45:223–238

    Article  Google Scholar 

  • Feddersen F (2014) The generation of surfzone eddies in a strong alongshore current. J Phys Oceanogr 44:600–617

    Article  Google Scholar 

  • Garnier R, Calvete D, Falqués A, Dodd N (2008) Modelling the formation and the long-term behavior of rip channel systems from the deformation of a longshore bar. J Geophys Res 113:C07053. doi:10.1029/2007JC004632

    Google Scholar 

  • Haas KA, Warner JC (2009) Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS. Ocean Model 26:91–103

    Article  Google Scholar 

  • Haas KA, Svendsen IA, Haller MC, Zhao Q (2003) Quasi 3-D modeling of rip current systems. J Geophys Res 108(C7). doi:10.1029/2002JC001355

  • Haller MC, Dalrymple RA, Svendsen IA (2002) Experimental study of nearshore dynamics on a barred beach with rip channels. J Geophys Res 107(C2). doi:10.1029/2001JC000955

  • Houser C, Barrett G, Labude D (2011) Alongshore variation in the rip current hazard at Pensacola Beach, Florida. Nat Hazards 57:501–523

    Article  Google Scholar 

  • Houser C, Arnott R, Ulzhofer S, Barrett G (2013) Nearshore circulation over transverse anr and rip morphology with oblique wave forcing. Earth Surf Process Land 38:1269–1279

    Article  Google Scholar 

  • Johnson D, Pattiaratchi C (2004) Transient rip currents and nearshore circulation on a swell-dominated beach. J Geophys Res 109(C02026). doi:10.1029/2003JC001798

  • Kennedy AB, Thomas D (2004) Drifter measurements in a laboratory rip current. J Geophys Res 109 (C08005). doi:10.1029/2003JC001927

  • Lee G, Birkemeier WA (1993) Beach and nearshore survey data: 1985-1991 CERC Field Research Laboratory. In: Tech. Rep. CERC-93-3, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss

  • Lentz SJ, Fewings MR (2012) The wind- and wave-driven inner-shelf circulation. Ann Rev Mar Sci 4:317–343

    Article  Google Scholar 

  • Long JW, Ozkan-Haller HT (2005) Offshore controls on nearshore rip currents. J Geophys Res 110(C12007). doi:10.1029/2005JC003018

  • MacMahan JH, Reniers AJHM, Thornton EB, Stanton TP (2004a) Infragravity rip current pulsations. J Geophys Res 109:C01033. doi:10.1029/2003JC002068

  • MacMahan JH, Reniers AJHM, Thornton EB, Stanton TP (2004b) Surf zone eddies coupled with rip current morphology. J Geophys Res 109:C07004. doi:10.1029/2003JC002083

  • MacMahan JH, Brown JW, Brown JA, Thornton EB, Reniers AJHM, Stanton TP, Gallagher EL, Morison J, Austin MJ, Scott TM, Senechal N (2010) Mean lagrangian flow behavior on an open coast rip channeled beach: a new perspective. Mar Geol 268:1–15. doi:10.1016/j.margeo.2009.09.011

    Article  Google Scholar 

  • McCarroll RJ, Brander RW, MacMahan JH, Turner IL, Reniers AJHM, Brown JA (2013) RIPSAFE: rip current swimmer and floater experiments, Shelly Beach, NSW, Australia. J Coastal Res Spec Issue 65:784–789

    Google Scholar 

  • McCarroll RJ, Brander RW, MacMahan JH, Turner IL, Reniers AJHM, Brown JA, Bradstreet A, Sherker S (2014) Evaluation of swimmer-based rip current escape strategies. Nat Hazards 71:1821–1846

    Article  Google Scholar 

  • Michallet H, Castelle B, Barthélemy E, Berni C, Bonneton P (2013) Physical modeling of three-dimensional intermediate beach morphodynamics. J Geophys Res 118(2):1045–1059. doi:10.1002/jgrf.20078

    Article  Google Scholar 

  • Murray T, Cartwright N, Tomlinson R (2013) Video-imaging of transient rip currents on the Gold Coast open beaches. J Coast Res Spec Issue 65:1809–1814

    Google Scholar 

  • Ozkan-Haller HT (2014) Vertical variability of undertow and longshore currents outside the surf zone. J Waterw Port Coast Ocean Eng 140:4–13

    Article  Google Scholar 

  • Pattiaratchi C, Olson D, Hetzel Y, Lowe R (2009) Wave-driven circulation patterns in the lee of groynes. Cont Shelf Res 29:1961–1974. doi:10.1016/j.csr.2009.04.011

    Article  Google Scholar 

  • Reniers AJHM, MacMahan JH, Thornton EB, Stanton T P, Henriquez M, Brown J W, Brown J A, Gallagher E (2009) Surf zone retention on a rip-channeled beach. J Geophys Res:114. doi:10.1029/2008JC005153

  • Reniers A J H M, MacMahan J H, Beron-Vera F J, Olascoaga M J (2010) Rip-current pulses tied to lagrangian coherent structures. Geophys Res Lett:37. doi:10.1029/2009GL041443

  • Roelvink J A, Reniers A J H M, van Dongeren A, de Vries JV, McCall R, Lescinski J (2009) Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56:1133–1152. doi:10.1016/j.coastaleng.2009.08.006

    Article  Google Scholar 

  • Scott T M, Russell P E, Masselink G, Austin M J, Wills S, Wooler A (2011) Rip current hazards on large-tidal beaches in the United Kingdom. In: Leatherman, S, Fletemeyer, J (eds) Rip currents beach safety, physical oceanography, and wave modelling. CRC Press, pp 225–242

  • Scott T M, Masselink G, Austin M J, Russell P E (2014) Controls on macrotidal rip current circulation and hazard. Geomorphology 214:198–215

    Article  Google Scholar 

  • Shadden S C, Lekien F, Mardsen J E (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensionak aperiodic flows. Physica D 212:271–304. doi:10.1016/j.physd.2005.10.007

    Article  Google Scholar 

  • Shanks A L, Morgan S G, MacMahan J H, Reniers A J H M (2010) Surf zone physical and morphological regime as determinants of temporal and spatial variation in larval recruitent. J Exp Mar Biol Ecol 392:140–150

    Article  Google Scholar 

  • Short A D (2007) Australian rip systems - friend or foe. J Coast Res SI 50:7–11

    Google Scholar 

  • Spydell M, Feddersen F (2009) Lagrangian drifter dispersion in the surf zone: directionnally spread, normally incident waves. J Phys Oceanogr 39:809–830. 10.1175/2008JPO3892

    Article  Google Scholar 

  • Winter G, van Dongeren A R, de Schipper MA, van Thiel de Vries JSM (2014) Rip currents under obliquely incident wind waves and tidal longshore currents. Coast Eng 89:106–119

    Article  Google Scholar 

Download references

Acknowledgements

This work was done within the framework of the French program EC2CO-Biohefect/Ecodyn/Dril/McrobiEN (Dynamique instationnaire et morphodynamique des courants darrachement) and project BARBEC (ANR N2010 JCJC 602 01). JM was supported by NSF OCE-0926750. The authors thank the two anonymous reviewers whose comments/suggestions helped improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Castelle.

Additional information

Responsible Editor: Rodrigo Cienfuegos

This article is part of the Topical Collection on the 7th International Conference on Coastal Dynamics in Arcachon, France 24-28 June 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelle, B., Reniers, A. & MacMahan, J. Bathymetric control of surf zone retention on a rip-channelled beach. Ocean Dynamics 64, 1221–1231 (2014). https://doi.org/10.1007/s10236-014-0747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0747-0

Keywords

Navigation