Skip to main content

Advertisement

Log in

ESTELA: a method for evaluating the source and travel time of the wave energy reaching a local area

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The description of wave climate at a local scale is of paramount importance for offshore and coastal engineering applications. Conditions influencing wave characteristics at a specific location cannot, however, be fully understood by studying only local information. It is necessary to take into account the dynamics of the ocean surface over a large ‘upstream’ wave generation area. The goal of this work is to provide a methodology to easily characterize the area of influence of any particular ocean location worldwide. Moreover, the developed method is able to characterize the wave energy and travel time in that area. The method is based on a global scale analysis using both geographically and physically based criteria. The geographic criteria rely on the assumption that deep water waves travel along great circle paths. This limits the area of influence by neglecting energy that cannot reach a target point, as its path is blocked by land. The individual spectral partitions from a global wave reanalysis are used to reconstruct the spectral information and apply the physically based criteria. The criteria are based on the selection of the fraction of energy that travels towards the target point for each analysed grid point. The method has been tested on several locations worldwide. Results provide maps that inform about the relative importance of different oceanic areas to the local wave climate at any target point. This information cannot be inferred from local parameters and agrees with information from other approaches. The methodology may be useful in a number of applications, such as statistical downscaling, storm tracking and grid definition in numerical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alves J-HGM (2006) Numerical modeling of ocean swell contributions to the global wind–wave climate. Ocean Model 11(1–2):98–122. doi:10.1016/j.ocemod.2004.11.007

    Article  Google Scholar 

  • Ardhuin F, Chapron B, Collard F (2009) Observation of swell dissipation across oceans. Geophys Res Lett 36, L06607. doi:10.1029/2008GL037030

    Article  Google Scholar 

  • Ardhuin F, Rogers E, Babanin AV, Filipot J-F, Magne R, Roland A et al (2010) Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J Phys Oceanogr 40(9):1917–1941. doi:10.1175/2010JPO4324.1

    Article  Google Scholar 

  • Barber NF, Ursell F (1948) The generation and propagation of ocean waves and swell. I. Wave periods and velocities. Philos Trans R Soc Lond 240A:527–560

    Article  Google Scholar 

  • Bromirski PD, Cayan DR, Flick RE (2005) J Geophys Res 110, C03005. doi:10.1029/2004JC002398

    Google Scholar 

  • Camus P, Méndez FJ, Losada IJ, Menéndez M, Espejo A, Pérez A, Rueda A, Guanche Y (2014) A method for finding the optimal predictor indices for local wave climate conditions. This issue

  • Casas-Prat M, Wang XL, Sierra JP (2014) A physical-based statistical method for modeling ocean wave heights. Ocean Model 73:59–75

    Article  Google Scholar 

  • Chawla A, Tolman HL (2008) Obstruction grids for spectral wave models. Ocean Model 22(1–2):12–25. doi:10.1016/j.ocemod.2008.01.003

    Article  Google Scholar 

  • Collard F, Ardhuin F, Chapron B (2009) Monitoring and analysis of ocean swell fields from space: new methods for routine observations. J Geophys Res 114(C7), C07023. doi:10.1029/2008JC005215

    Google Scholar 

  • Devaliere E-M, Hanson JL, Luettich R (2009) Spatial tracking of numerical wave model output using a spiral search algorithm. 2009 WRI World Congress on Computer Science and Information Engineering, 404–408. doi:10.1109/CSIE.2009.1021

  • Dore BD (1978) Some effects of the air-water interface on gravity waves. Geophys Astrophys Fluid Dyn 10:215–230

    Article  Google Scholar 

  • Dupuis H, Michel D, Sottolichio A (2006) Wave climate evolution in the Bay of Biscay over two decades. J Mar Syst 63(3–4):105–114. doi:10.1016/j.jmarsys.2006.05.009

    Article  Google Scholar 

  • Espejo A, Camus P, Losada IJ, Méndez FJ (2014) Spectral ocean wave climate variability based on atmospheric circulation patterns. J Phys Oceanogr. doi:10.1175/JPOD-13-0276.1

  • Gerling TW (1992) Partitioning sequences and arrays of directional ocean wave spectra into component wave systems. J Atmos Ocean Technol 9(4):444–458. doi:10.1175/1520-0426(1992)009<0444:PSAAOD>2.0.CO;2

    Article  Google Scholar 

  • Graham NE, Diaz HF (2001) Evidence for intensification of North Pacific winter cyclones since 1948. Bull Am Meteorol Soc 82:1869–1893

    Article  Google Scholar 

  • Hanson JL, Phillips OM (2001) Automated analysis of ocean surface directional wave spectra. J Atmos Ocean Technol 18:177–293

    Article  Google Scholar 

  • Hasselmann K et al (1973) Measurements of wind–wave growth and swell decay during the Joint North Sea Wave Project. Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe 8(12):1–95, suppl. A

    Google Scholar 

  • Hemer MA, Church JA, Hunter JR (2010) Variability and trends in the directional wave climate of the Southern Hemisphere. Int J Climatol 30:475–491

    Google Scholar 

  • Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University Press, Cambridge, p 387

    Book  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. Geophys Monogr-Am Geophys Union 134:1–36

    Google Scholar 

  • Izaguirre C, Méndez FJ, Menéndez M, Luceño A, Losada IJ (2010) Extreme wave climate variability in southern Europe using satellite data. J Geophys Res, 115, C04009 J

  • Izaguirre C, Menéndez M, Camus P, Mendez FJ, Minguez R, Losada IJ (2012) Exploring the interannual variability of extreme wave climate in the Northeast Atlantic Ocean. Ocean Model 59–60:31–40

    Article  Google Scholar 

  • Le Cozannet G, Lecacheux S, Delvallee E, Desramaut N, Oliveros C, Pedreros R (2011) Teleconnection Pattern influence on sea–wave climate in the Bay of Biscay. J Clim 24(3):641–652. doi:10.1175/2010JCLI3589.1

    Article  Google Scholar 

  • Mitsuyasu H, Tasai F, Suhara T, Mizuno S, Ohkusu M, Honda T, Rikiishi K (1975) Observations of the directional spectrum of ocean waves using a cloverleaf buoy. J Phys Oceanogr 5(4):750–760

    Article  Google Scholar 

  • Munk W (1947) Tracking storms by forerunners of swell. J Meteorol 4(2):45–57

    Article  Google Scholar 

  • Munk WH, Miller GR, Snodgrass FE, Barber NF (1963) Directional recording of swell from distant storms. Philos Trans R Soc A Math Phys Eng Sci 255(1062):505–584. doi:10.1098/rsta.1963.0011

    Article  Google Scholar 

  • Rascle N, Ardhuin F (2012) A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Model. doi:10.1016/j.ocemod.2012.12.001

    Google Scholar 

  • Rascle N, Ardhuin F, Queffeulou P, Croizé-Fillon D (2008) A global wave parameter database for geophysical applications. Part 1: Wave–current–turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Model 25(3–4):154–171. doi:10.1016/j.ocemod.2008.07.006

    Article  Google Scholar 

  • Reguero BG, Menéndez M, Méndez FJ, Mínguez R, Losada IJ (2012) A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coast Eng 65:38–55. doi:10.1016/j.coastaleng.2012.03.003

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057. doi:10.1175/2010BAMS3001.1

    Article  Google Scholar 

  • Snodgrass FE, Groves GW, Hasselmann KF, Miller GR, Munk WH, Powers WH (1966) Propagation of ocean swell across the Pacific. Philos Trans R Soc A Math Phys Eng Sci 259(1103):431–497. doi:10.1098/rsta.1966.0022

    Article  Google Scholar 

  • Tolman HL (2003) Treatment of unresolved islands and ice in wind wave models. Ocean Model 5(3):219–231. doi:10.1016/S1463-5003(02)00040-9

    Article  Google Scholar 

  • Tolman HL (2008) A mosaic approach to wind wave modeling. Ocean Model 25(1–2):35–47. doi:10.1016/j.ocemod.2008.06.005

    Article  Google Scholar 

  • Tolman HL, Chalikov D (1996) Source terms in a third-generation wind-wave model. J. Phys. Oceanogr, 26, 2497–2518

  • Tracy B, Devaliere E-M, Nicolini T, Tolman HL, Hanson JL (2007) Wind sea and swell delineation for numerical wave modeling. In 10th international workshop on wave hindcasting and forecasting & coastal hazards symposium, JCOMM Tech. Rep. 41, WMO/TD-No. 1442. Paper P12

  • Wang XL, Zwiers FW, Swail VR (2004) North Atlantic Ocean wave climate change scenarios for the twenty-first century. J Clim 17:2368–2383

    Article  Google Scholar 

  • Woolf DK, Challenor PG, Cotton PD (2002) Variability and predictability of the North Atlantic wave climate. J Geophys Res C: Oceans 107(10):3145 doi:10,1029/2001JC001124

  • Young IR (1999) Seasonal variability of the global ocean wind and wave climate. Int J Climatol 19:931–950

    Article  Google Scholar 

Download references

Acknowledgments

The work was partly funded by the project iMar21 (CTM2010-15009) from the Spanish Government and the FP7 European project CoCoNet (287844). The authors would also like to acknowledge the valuable suggestions made by Paula Camus, Antonio Espejo and Antonio Tomas. We also thank the anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando J. Méndez.

Additional information

Responsible Editor: Oyvind Breivik

This article is part of the Topical Collection on the 13th International Workshop on Wave Hindcasting and Forecasting in Banff, Alberta, Canada October 27 - November 1, 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, J., Méndez, F.J., Menéndez, M. et al. ESTELA: a method for evaluating the source and travel time of the wave energy reaching a local area. Ocean Dynamics 64, 1181–1191 (2014). https://doi.org/10.1007/s10236-014-0740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0740-7

Keywords

Navigation