Skip to main content

Advertisement

Log in

Seasonal dynamics of physical and biological processes in the central California Current System: A modeling study

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A 3-D physical and biological model is used to study the seasonal dynamics of physical and biological processes in the central California Current System. Comparisons of model results with remote sensing and in situ observations along CalCOFI Line 67 indicate our model can capture the spatial variations of key variables (temperature, nutrients, chlorophyll, and so on) on annual mean and seasonal cycle. In the coastal upwelling system, it is the alongshore wind stress that upwells high nutrients to surface from 60 m and stimulates enhanced plankton biomass and productivity in the upwelling season. As a result, coastal species peak in the late upwelling period (May–July), and oceanic species reach the annual maxima in the oceanic period (August–October). The annual maximum occurs in the late upwelling period for new production and in the oceanic period for regenerated production. From the late upwelling period to the oceanic period, stratification is intensified while coastal upwelling becomes weaker. Correspondingly, the coastal ecosystem retreats from ∼300 to ∼100 km offshore with significant decline in chlorophyll and primary production, and the oceanic ecosystem moves onshore. During this transition, the decline in phytoplankton biomass is due to the grazing pressure by mesozooplankton in the 0–150 km domain, but is regulated by low growth rates in the 150–500 km offshore domain. Meanwhile, the growth rates of phytoplankton increase in the coastal waters due to deeper light penetration, while the decrease in offshore growth rates is caused by lower nitrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Barth JA, Cowles TJ, Kosro PM et al (2002) Injection of carbon from the shelf to offshore beneath the euphotic zone in the California Current. J Geophys Res 107(c6). doi:10.1029/2001JC000956

  • Carr M-E (2001) Estimation of potential productivity in eastern boundary currents using remote sensing. Deep-Sea Res II 49:59–80

    Article  Google Scholar 

  • Carr M-E, Kearns EJ (2003) Production regimes in four Eastern Boundary Current systems. Deep-Sea Res II 50:3199–3221

    Article  Google Scholar 

  • Chai F, Dugdale RC, Peng T-H, Wilkerson FP, Barber RT (2002) One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle. Deep-Sea Res II 49:2713–2745

    Article  Google Scholar 

  • Chai F, Liu G, Xue H, Shi L et al (2009) Seasonal and interannual variability of carbon cycle in south china sea: a three-dimensional physical-biogeochemical modeling study. J Oceanogr 65:703–720

    Article  Google Scholar 

  • Chavez FP, Smith SL (1995) Biological and chemical consequences of open ocean upwelling. In: Summerhayes CP, Emeis KC, Angel MV, Smith RL, Zeitzschel B (eds) Upwelling in the oceans: modern processes and ancient records. Wiley & Sons, New York, pp 149–169

  • Chavez FP, Barber RT, Sanderson MP (1989) The potential primary production of the Peruvian upwelling ecosystem, 1953–1984. In: Pauly D, Muck P, Mendo J, Tsukayama I (ed) The Peruvian Upwelling Ecosystem: Dynamics and Interactions. ICLARM Conference Proceedings, pp 50–63

  • Chavez FP, Pennington JT, Castro CG, Ryan JP, Michisaki RP, Schlining B, Walz P, Buck KR, McFadyen A, Collins CA (2002) Biological and chemical consequences of the 1997–1998 El Niňo in central California waters. Prog Oceanogr 54:205–232

    Article  Google Scholar 

  • Checkly DM Jr, Barth JA (2009) Patterns and processes in the California Current System. Prog Oceanogr 83:49–64

    Article  Google Scholar 

  • Chelton DB, Bernal PA, McGowan JA (1982) Large-scale interannual physical and biological interaction in the California current. J Mar Res 40:1095–1125

    Google Scholar 

  • Chenillat F, Riviere P, Capet X, Di Lorenzo E, Blanke B (2012) North Pacific Gyre Oscillation modulates seasonal timing and ecosystem functioning in the California Current upwelling system. Geophys Res Lett 39, L01606. doi:10.1029/2011GL049966

    Article  Google Scholar 

  • Cloern JE (1999) The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquat Ecol 33:3–16

    Article  Google Scholar 

  • Collins CA, Pennington JT, Castro CG, Rago TA, Chavez FP (2003) The California Current system off Monterey, California: physical and biological coupling. Deep-Sea Res II 50:2389–2404

    Article  Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary production. Limnol Oceanogr 12:196–206

    Article  Google Scholar 

  • Dugdale RC, Barber TT, Chai F, Peng T-H, Wilkerson FP (2002) One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part II: sensitivity analysis and comparison with JGOFS EQPac data. Deep-Sea Res II 49:2747–2768

    Article  Google Scholar 

  • Dugdale RC, Wilkerson RP, Chai F, Feely R (2007) Size fractionated nitrogen uptake measurements in the Equatorial Pacific and confirmation of the low Si-HNLC condition. Global Biogeochem Cycle 21, GB2005. doi:10.1029/2006GB002722

    Article  Google Scholar 

  • Dugdale RC, Chai F, Feely R, Measures C, Parker A, Wilkerson F (2010) The regulation of equatorial Pacific new production and pCO2 by silicate-limited diatoms. Deep-Sea Res II 58:477–492

    Article  Google Scholar 

  • Friedrichs MAM, Dusenberry JA, Anderson LA et al (2007) Assessment of skill and portability in regional marine biogeochemical models: Role of multiple plankton groups. J Geophys Res 112, C08001. doi:10.1029/2006JC003852

    Google Scholar 

  • Fujii M, Chai F (2007) Modeling carbon and silicon cycling in the equatorial Pacific. Deep-Sea Res II 54:496–520

    Article  Google Scholar 

  • Fujii M, Chai F, Shi L, Inoue H, Ishii M (2009) Seasonal and interannual variability of carbon cycling in western and central tropical-subtropical Pacific: a Physical-Biogeochemical Modeling Study. J Oceanogr 65:689–701

    Article  Google Scholar 

  • Gruber N, Frenzel H, Doney SC et al (2006) Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System. Deep-Sea Res I 53:1483–1516

    Article  Google Scholar 

  • Hickey BM (1979) The California current system—hypotheses and facts. Prog Oceanogr 8:191–279

    Article  Google Scholar 

  • Huyer A (1983) Coastal upwelling in the California Current System. Prog Oceanogr 12:259–284

    Article  Google Scholar 

  • Huyer A, Sobey EJC, Smith RL (1979) The spring transition in currents over the Oregon continental shelf. J Geophys Res 84(C11):6995–7011

    Article  Google Scholar 

  • Kahru M, Kudela R, Manzano-Sarabia M, Mitchell BG (2009) Trends in primary production in the California Current detected with satellite data. J Geophys Res 114, C02004. doi:10.1029/2008JC004979

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Lachkar Z, Gruber N (2011) What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study. Biogeosci Discuss 8:5617–5652. doi:10.5194/bgd-8-5617-2011

    Article  Google Scholar 

  • Landry MR, Ohman MD, Goericke R, Stukel MR, Tsyrklevich K (2009) Lagrangian studies of phytoplankton growth and grazing relationships in a coastal upwelling ecosystem off Southern California. Prog Oceanogr 83:208–216

    Article  Google Scholar 

  • Li Q, Franks PJS, Landry MR, Coericke R, Taylor AG (2010) Modeling phytoplankton growth rates and chlorophyll to carbon ratio in California coastal and pelagic ecosystems. J Geophys Res 115:G04003. doi:10.1029/2009JG001111

    Google Scholar 

  • Liu G, Chai F (2009) Seasonal and interannual variability of primary and export production in the South China Sea: a three-dimensional physical–biogeochemical model study. ICES J Mar Sci 66(2):420–431

    Article  Google Scholar 

  • Lynn R, Simpson JJ (1987) The California Current Systems: the seasonal variability of its physical characteristics. J Geophys Res 92(C12):12947–12966

    Article  Google Scholar 

  • Malone TC (1971) The relative importance of nannoplankton and netplankton as primary production in the California Current System. Fish Bull 69:799–820

    Google Scholar 

  • Messié M, Ledesma J, Kolber DD et al (2009) Potential new production estimates in four eastern boundary upwelling ecosystems. Prog Oceanogr 83:151–158

    Article  Google Scholar 

  • Monterey G, Levitus S (1997) Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas NESDIS 14. U.S. Department of Commerce, Washington, D.C

    Google Scholar 

  • Olivieri RA, Chavez FP (2000) A model of plankton dynamics for the coastal upwelling system of Monterey Bay, California. Deep-Sea Res II 47:1077–1106

  • Pennington JT, Chavez FP (2000) Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at staion H3/M1 over 1989–1996 in Monterey Bay, California. Deep-Sea Res II 47:947–973

  • Pennington JT, Friederich GE, Castro CG, Collins CA, Evans WW, Chavez FP (2010) The northern and central California Coastal upwelling system. In: Liu K-K (ed) Carbon and nutrient fluxes in continental margins. Springer, Berlin, pp 29–44

    Google Scholar 

  • Pilskaln CH, Paduan JB, Chavez FP, Anderson RY, Berelson WM (1996) Carbon export and regeneration in the coastal upwelling system of Monterey Bay, central California. J Mar Res 54:1149–1178

    Article  Google Scholar 

  • Rago TA, Michisaki R, Marinovic B et al (2009) Physical, nutrient, and biological measurements of coastal waters off central California in June 2008. Report of the Naval Postgraduate School

  • Reid JL, Roden GI, Wyllie JG (1958) Studies of the California Current System. CalCOFI Rep., Calif. Coop. Oceanic Fish. Invest., La Jolla, 6, 27–56

  • Reynolds RW, Smith TM, Liu C et al (2007) Daily high-resolution-blended analysis for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Santora JA, Sydeman WJ, Messie M et al (2013) Triple check: observations verify structural realism of an ocean ecosystem model. Geophys. Res. Lett., 40, doi:10.1002/grl.50312

  • Shchepetkin AF, McWilliams JC (2005) The Regional Ocean Modeling System: a split-explicit, free-surface, topography following coordinates ocean model. Ocean Model 9:347–404

    Article  Google Scholar 

  • Skogsberg T (1936) Hydrography of Monterey Bay, California. Thermal conditions, 1929–1933. Trans Am Philos Soc 29:1–152

    Article  Google Scholar 

  • Skogsberg T, Phelps A (1946) Hydrography of Monterey Bay, California. Thermal conditions, Part II, 1934–1937. Proc Am Philos Soc 90:350–386

    Google Scholar 

  • Small LF, Menzies DW (1981) Patterns of primary productivity and biomass in a coastal upwelling region. Deep-Sea Res A 28:123–149

    Article  Google Scholar 

  • Smith PE, Eppley RW (1982) Primary production and the anchovy population in the Southern California Bight: comparison of time series. Limnol Oceanogr 27(1):1–17

    Article  Google Scholar 

  • Strub PT, Allen JS, Huyer A, Smith RT (1987a) Seasonal cycles of currents, temperatures, winds, and sea level over the Northeast Pacific continental shelf: 35°N to 48°N. J Geophys Res 92(C2):1507–1526

    Article  Google Scholar 

  • Strub PT, Allen JS, Huyer A, Smith RT (1987b) Large-scale structure of the spring transition in the coastal ocean off western North America. J Geophys Res 92(C2):1527–1544

    Article  Google Scholar 

  • Zhang H, Bates JJ, Reynolds RW (2006) Assessment of composite global sampling: sea surface wind speed. Geophys Res Lett 33, L17714. doi:10.1029/2006GL027086

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the 100-Talent Program of Chinese Academy of Sciences (50601-112), the Strategic Priority Research program of the Chinese Academy of Sciences, XDA10010304.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Guo or Fei Chai.

Additional information

Responsible Editor: Tal Ezer

This article is part of the Topical Collection on the 5th International Workshop on Modelling the Ocean (IWMO) in Bergen, Norway 17–20 June 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Chai, F., Xiu, P. et al. Seasonal dynamics of physical and biological processes in the central California Current System: A modeling study. Ocean Dynamics 64, 1137–1152 (2014). https://doi.org/10.1007/s10236-014-0721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0721-x

Keyword

Navigation