Skip to main content

On the developments of spectral wave models: numerics and parameterizations for the coastal ocean

Abstract

The development of numerical wave models for coastal applications, including coupling with ocean circulation models, has spurred an ongoing effort on theoretical foundations, numerical techniques, and physical parameterizations. Some important aspects of this effort are reviewed here, and results are shown in the case of the French Atlantic and Channel coast using version 4.18 of the WAVEWATCH III R model. Compared to previous results, the model errors have been strongly reduced thanks to, among other things, the introduction of currents, coastal reflection, and bottom sediment types. This last item is described here for the first time, allowing unprecedented accuracy at some sites along the French Atlantic Coast. The adequate resolution, necessary to represent strong gradients in tidal currents, was made possible by the efficiency brought by unstructured grids. A further increase in resolution, necessary to resolve surf zones and still cover vast regions,will require further developments in numerical methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Alves JHGM, Chawla A, Tolman HL, Schwab D, Lang G, Mann G (2013) The operational implementation of a great lakes wave forecasting system at NOAA/NCEP. Weather and Forecasting 28 (in press)

  • Andrews DG, McIntyre ME (1978) On wave action and its relatives. J Fluid Mech 89:647–664. corrigendum: vol. 95, p. 796

    Article  Google Scholar 

  • Ardhuin F, Herbers THC (2005) Numerical and physical diffusion: can wave prediction models resolve directional spread? J Atmos Ocean Technol 22(7):886–895

    Article  Google Scholar 

  • Ardhuin F, Herbers THC (2013) Double-frequency noise generation by surface gravity waves in finite depth: gravity, acoustic and seismic modes. J Fluid Mech 716:316–348

    Article  Google Scholar 

  • Ardhuin F, Magne R (2007) Current effects on scattering of surface gravity waves by bottom topography. J Fluid Mech 576:235–264

    Article  Google Scholar 

  • Ardhuin F, Roland A (2012) Coastal wave reflection, directional spreading, and seismo-acoustic noise sources. J Geophys Res 117:C00J20. doi:10.1029/2011JC007832

    Google Scholar 

  • Ardhuin F, Roland A (2013) Spectral wave models, coastal and coupled aspects. In: Bonneton P, Garlan T (eds) Coastal Dynamics ’13, University of Bordeaux, pp 25–38

  • Ardhuin F, Herbers THC, O’Reilly WC (2001) A hybrid Eulerian-Lagrangian model for spectral wave evolution with application to bottom friction on the continental shelf. J Phys Oceanogr 31(6):1498–1516

    Article  Google Scholar 

  • Ardhuin F, Herbers THC, Jessen PF, O’Reilly WC (2003a) Swell transformation across the continental shelf. Part II: validation of a pectral energy balance equation. J Phys Oceanogr 33:1940–1953

    Article  Google Scholar 

  • Ardhuin F, O’Reilly WC, Herbers THC, Jessen PF (2003b) Swell transformation across the continental shelf. Part I: Attenuation anddirectional broadening. J Phys Oceanogr 33:1921–1939

    Article  Google Scholar 

  • Ardhuin F, Rogers E, Babanin A, Filipot JF, Magne R, Roland A, van der Westhuysen A, Queffeulou P, Lefevre JM, Aouf L, Collard F (2010) Semi-empirical dissipation source functions for wind-wave models: part I, definition, calibration and validation. J Phys Oceanogr 40(9):1917–1941

    Article  Google Scholar 

  • Ardhuin F, Tournadre J, Queffelou P, Girard-Ardhuin F (2011) Observation and parameterization of small icebergs: drifting breakwaters in the southern ocean. Ocean Model 39:405–410

  • Ardhuin F, Dumas F, Bennis A-C, Roland A, Sentchev A, Forget P, Wolf J, Girard F, Osuna P, Benoit M (2012) Numerical wave modeling in conditions with strong currents: dissipation, refraction and relative wind. J Phys Oceanogr 42:2101–2120

  • Ardhuin F, Lavanant T, Obrebski M, Marié L, Royer JY, d’Eu JF, Howe BM, Lukas R, Aucan J (2013) A numerical model for ocean ultra low frequency noise: wave-generated acoustic-gravity and Rayleigh modes. J Acoust Soc Amer 134(4):3242–3259.

  • Becq-Girard F (1999) Non-linear propagation of unidirectional wave fields over varying topography. Coastal Eng 38:91–113

    Article  Google Scholar 

  • Benetazzo A (2006) Measurements of short water waves using stereo matched image sequences. Coastal Eng 53:1013–1032

    Article  Google Scholar 

  • Bennis AC (2011) On the coupling of wave and three-dimensional circulation models: choice of theoretical framework practical implementation and adiabatic tests. Ocean Model 40:260–272

    Article  Google Scholar 

  • Benoit M (1996) Development of a third generation shallow-water wave model with unstructured spatial meshing. In: Proceedings of the 25th International Conference on Coastal Engineering Marcos, F. ASCE, Orlando, pp 465–478

  • Bidlot J (2005) A revised formulation for ocean wave dissipation in CY25R1 Tech. Rep. Memorandum R60.9/JB/0516, Research Department, ECMWF, Reading, UK, Abdalla, S

  • Booij N, Holthuijsen LH (1987) Propagation of ocean waves in discrete spectral wave models. J Comp Phys 68:307–326

    Article  Google Scholar 

  • Booij N (1999) A third-generation wave model for coastal regions. 1. model description and validation, vol 104, Holthuijsen, LH, pp 7,649–7,666

  • Boudière E, Maisondieu C, Ardhuin F, Accensi M, Pineau-Guillou L, Lepesqueur J (2013) A suitable metocean hindcast database for the design of marine energy converters. Int J Mar Energy 28:e40– e52

    Article  Google Scholar 

  • Bouws E, Komen GJ (1983) On the balance between growth and dissipation in an extreme depth-limited wind-sea in the southern North Sea. J Phys Oceanogr 13:1653–1658

    Article  Google Scholar 

  • Cavaleri L, Bertotti L (1997) In search of the correct wind and wave fields in a minor basin. Mon Weather Rev 125(8):1964–1975

    Article  Google Scholar 

  • Csík Á, Ricchiuto M, Deconinck H (2002) A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws. J Comp Phys 172(2):286–312

    Article  Google Scholar 

  • Dietrich JC, Westerink JJ, Kennedy AB, Smith JM, Jensen RE, Zijlema M, Holthuijsen LH, Dawson C, Luettich RA Jr, Powell MD, Cardone VJ, Cox AT, Stone GW, Pourtaheri H, Hope ME, Tanaka S, Westerink LG, Westerink HJ, Cobell Z (2011) Hurricane Gustav (2008) waves and storm surge: hindcast, synoptic analysis, and validation in southern Louisiana. Mon Weather Rev 139:2488–2522

    Article  Google Scholar 

  • Dietrich JC, Zijlema M, Allier PE, Holthuijsen LH, Booij N, Meixner JD, Proft JK, Dawson CN, Bender CJ, Naimaster A, Smith JM, Westerink JJ (2013) Limiters for spectral propagation velocities in SWAN. Ocean Model 139:85–102. doi:10.1016/j.ocemod.2012.11.005

    Article  Google Scholar 

  • Dommermuth D, Yue D (1987) A high-order spectral method for the study of nonlinear gravity waves. J Fluid Mech 184:267–288

    Article  Google Scholar 

  • Elfouhaily T, Thompson D, Vandemark D, Chapron B (1999) Weakly nonlinear theory and sea state bias estimations. J Geophys Res 104(C4):7641–7647

    Article  Google Scholar 

  • Farrell WE, Munk W (2008) What do deep sea pressure fluctuations tell about short surface waves? Geophys Res Lett 35(7):L19, 605. doi:10.1029/2008GL035008

    Google Scholar 

  • Filipot JF, Ardhuin F (2012) A unified spectral parameterization for wave breaking: from the deep ocean to the surf zone. J Geophys Res 117:C00J08. doi:10.1029/2011JC007784

    Google Scholar 

  • Garlan T (1995) La cartographie des sédiments du littoral français résultats et objectifs. J Rech Océanogr 20:50–54

    Google Scholar 

  • Garlan T (2009) De la classification des sédiments à la cartographie de la nature des fonds marins. Ann Hydrogr 20:50–54

    Google Scholar 

  • Godunov SK (1954) Different methods for shock waves, PhD thesis, Moscow State University

  • Gonzalez-Lopez JO, Westerink J, Mercado A, Capella J, Morell J, Canals M (2011) Effect of a steep and complex-featured shelf on computed wave spectra. In: Proceedings 12th international workshop of wave hindcasting and forecasting, Hawaii

  • Hanafin J, Quilfen Y, Ardhuin F, Vandemark D, Chapron B, Feng H, Sienkiewicz J, Queffeulou P, Obrebski M, Chapron B, Reul N, Collard F, Cormand D, de Azevedo EB, Vandemark D, Stutzmann E (2012) Phenomenal sea states and swell radiation: a comprehensive analysis of the 12–16 February 2011 North Atlantic storms. Bull Amer Meterol Soc 93:1825–1832

    Article  Google Scholar 

  • Hargreaves JC, Annan JD (2000) Comments on “Improvement of the short-fetch behavior in the wave ocean model (WAM)”. J Atmos Ocean Technol 18:711–715

    Article  Google Scholar 

  • Hasselmann K, Barnett TP, Bouwsm E, Carlson H, Cartwright DE, Enke K, Ewing JA, Gienapp H, Hasselmann DE, Kruseman P, Meerburg A, Müller P, Olbers DJ, Richter K, Sell W, Walden H (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project. Deut Hydrogr Z 8(12):1–95. suppl. A

    Google Scholar 

  • Herbers THC, Burton MC (1997) Nonlinear shoaling of directionally spread waves on a beach. J Geophys Res 102(C9):21,101–21,114

    Article  Google Scholar 

  • Hersbach H, Janssen PAEM (1999) Improvement of the short-fetch behavior in the wave ocean model (WAM). J Atmos Ocean Technol 16:884–892

    Article  Google Scholar 

  • Holthuijsen LH, Herman A, Booij N (2003) Phase-decoupled refraction-diffraction for spectral wave models. Coastal Eng 49:291–305

    Article  Google Scholar 

  • Janssen PAEM (2008) Progress in ocean wave forecasting. J Comp Phys 227:3572–3594. doi:10.1016/j.jcp.2007.04.029

    Article  Google Scholar 

  • Janssen PAEM (2009) On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J Fluid Mech 637:1–44

    Article  Google Scholar 

  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge

  • de Laplace PS (1776) Suite des recherches sur plusieurs points du système du monde (XXV–XXVII), Mém Présentés Acad R Sci Inst France, pp. 542-552

  • Lax PD, Richtmyer RD (1956) Survey of the stability of linear finite difference equations. Comm Pure Appl Math 9:267–293

    Article  Google Scholar 

  • Leonard BP (1991) The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput Methods Appl Mech Eng 88:17–74

    Article  Google Scholar 

  • Li JG (2010) Global transport on a spherical multiple-cell grid. Mon Weather Rev 139:1536–1555. doi:10.1175/2010MWR3196.1

    Article  Google Scholar 

  • Liau JM, Roland A, Hsu TW, Ou SH, Li YT (2011) Wave refraction-diffraction effect in the wind wave model WWM. Coastal Eng 58:429–443

    Article  Google Scholar 

  • Magne R, Belibassakis K, Herbers T H C, Ardhuin F, O’Reilly WC, Rey V (2007) Evolution of surface gravity waves over a submarine canyon. J Geophys Res 112:C01,002. doi:10.1029/2005JC003035

    Google Scholar 

  • O’Reilly WC, Guza RT (1991) Comparison of spectral refraction and refraction-diffraction wave models. J Waterway Port Coast Ocean Eng 117(3):199–215

    Article  Google Scholar 

  • Patankar S (1980) Numerical heat transfer and fluid flow: computational methods in mechanics and thermal science. Hemisphere Publishing Corp., Washington

    Google Scholar 

  • Phillips OM (1977) The dynamics of the upper ocean. Cambridge University Press, London, p 336

    Google Scholar 

  • Popinet S, Gorman RM, Rickard GJ, Tolman HL (2010) A quadtree-adaptive spectral wave model, vol 34, pp 36–49

  • Priestley MB (1965) Evolutionary and non-stationary processes. J Roy Statist Soc Ser B 27:204–237

    Google Scholar 

  • Queffeulou P (2010) Global altimeter SWH data set, version 7, Ifremer, France

  • Rascle N, Ardhuin F (2013) A global wave parameter database for geophysical applications. Part 2: model validation with improved source term parameterization. Ocean Modelling (in press)

  • Rascle N, Ardhuin F, Queffeulou P, Croizé-Fillon D (2008) A global wave parameter database for geophysical applications. Part 1: wave-current-turbulence interaction parameters for the open ocean based on traditional parameterizations, vol 25, pp 154–171

  • Rayevskiy MA (1983) On the propagation of gravity waves in randomly inhomogeneous nonsteady-state currents. Izv Atmos Ocean Phys 19(6):475–479

    Google Scholar 

  • Ris R, Holthuijsen L H, Smith JM, Booij N, van Do ngeren AR (2002) The ONR virtual testbed for coastal and oceanic wave models. In: Proc. 28th Int. Conf. Coastal Engng., ASCE, Cardiff, ASCE, pp 380–391

  • Ris R C, Booij N, Holthuijsen LH (1999) A third-generation wave model for coastal regions. 2. Verification. J Geophys Res 104(C4):7,667–7,681

    Article  Google Scholar 

  • Rogers WE, Kaihatu JM, Petit HAH, Booij N, Holthuijsen LH (2002) Diffusion reduction in an arbitrary scale third generation wind wave model, vol 29, pp 1357–1390

  • Roland A (2008) Development of WWM II: spectral wave modelling on unstructured meshes. PhD thesis, Technische Universität Darmstadt, Institute of Hydraulic and Water Resources Engineering

  • Roland A, Zhang YJ, Wang HV, Meng Y, Teng YC, Maderich V, Brovchenko I, Dutour-Sikiric M, Zanke U (2012) A fully couple 3D wave-current interaction model on unstructured grids. J Geophys Res 117:C00J33. doi:10.1029/2012JC007952

    Google Scholar 

  • Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, ya Chuang H, Juang HMHaJS, Iredell M, Treadon R, Kleist D, Delst PV, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP Climate Forecast System Reanalysis. Bull Amer Meterol Soc 91:1015–1057

    Article  Google Scholar 

  • Shemdin OH, Hsiao SV, Carlson HE, Hasselmann K, Schulze K (1980) Mechanisms of wave transformation in finite depth water. J Geophys Res 85(C9):5012–5018

    Article  Google Scholar 

  • SWAMP Group (1984) Ocean wave modelling. Plenum Press, New York

    Google Scholar 

  • Tanaka M (2001) Verification of Hasselmann’s energy transfer among surface gravity waves by direct numerical simulations of primitive equations. J Fluid Mech 444:199–221

    Article  Google Scholar 

  • Tayfun A (1980) Narrow-band nonlinear sea waves. J Geophys Res 85(C3):1543–1552

    Google Scholar 

  • Fedele F, Tayfun A (2007) Wave height distributions and nonlinear effects. Ocean Eng 34:1631–1649

    Article  Google Scholar 

  • Thornton EB, Guza RT (1983) Transformation of wave height distribution. J Geophys Res 88(C10):5,925–5,938

    Article  Google Scholar 

  • Toledo Y, Hsu TW, Roland A (2012) Extended time-dependent mild-slope and wave-action equations for wave-bottom and wave-current interactions. Proc Roy Soc Lond A 468:184–205. doi:10.1098/rspa.2011.037

    Article  Google Scholar 

  • Tolman HL (1994) Wind waves and moveable-bed bottom friction. J Phys Oceanorg 24:994–1,009

    Article  Google Scholar 

  • Tolman HL (2002a) Alleviating the garden sprinkler effect in wind wave models. Ocean Model 4:269–289

    Article  Google Scholar 

  • Tolman HL (2002b) Distributed memory concepts in the wave model WAVEWATCH III. Parallel Comput 28:35–52

    Article  Google Scholar 

  • Tolman HL (2008) A mosaic approach to wind wave modeling. Ocean Model 25:35–47. doi:10.1016/j.ocemod.2008.06.005

    Article  Google Scholar 

  • Tolman HL (2009) User manual and system documentation of WAVEWATCH-III TM version 3.14. Tech. Rep. 276, NOAA/ NWS/NCEP/MMAB

  • Tolman HL, Chalikov D (1996) Source terms in a third-generation wind wave model. J Phys Oceanogr 26:2497–2518

    Article  Google Scholar 

  • Tolman H L, Banner ML, Kaihatu JM (2013) The NOPP operational wave model improvement project. Ocean Model 70:2–10. doi:10.1016/j.ocemod.2012.11.011

    Article  Google Scholar 

  • Touboul J, Rey V (2012) Bottom pressure distribution due to wave scattering near a submerged obstacle. J Fluid Mech 702:444–459

    Article  Google Scholar 

  • Vincent CL, Briggs MJ (1989) Refraction-diffraction of irregular waves over a mound. J Waterway Port Coast Ocean Eng 115:269–284

    Article  Google Scholar 

  • WAMDI Group (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810

    Article  Google Scholar 

  • van der Westhuysen AJ, Zijlema M, Battjes JA (2007) Saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Eng 54:151–170

    Article  Google Scholar 

  • van der Westhuysen AJ, van Dongeren AR, Groeneweg J, van Vledder GP, Peters H, Gautier C, van Nieuwkoop JCC (2012) Improvement in spectral wave modelling in tidal inlet seas. J Geophys Res 117:C00J28

    Google Scholar 

  • Willebrand J (1975) Energy transport in a nonlinear and inhomogeneous random gravity wave field. J Fluid Mech 70:113–126

    Article  Google Scholar 

  • Wingeart KM (2001) Validation of operational global wave prediction models with spectral buoy data. Master’s thesis, Naval Postgraduate School, Monterey, CA

  • WISE Group (2007) Wave modelling—the state of the art. Prog Oceanogr 75:603–674. doi:10.1016/j.pocean.2007.05.005

    Article  Google Scholar 

  • Yanenko NN (1971) The method of fractional steps. Springer

  • Zijlema M, van der Westhuysen AJ (2005) On convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra. Coastal Eng 53:237–256. doi:10.1016/j.coastaleng.2004.12.006

    Article  Google Scholar 

  • Zijlema M (2010) Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Eng 57:267–277

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by the help and dedication of many, including J. Lepesqueur who generated the bottom type files and performed the initial simulations with variable roughness. All altimeter data processed by P. Queffeulou was kindly provided by CNES, ESA, and NOAA. We thank CETMEF, CEFAS, and SHOM for providing the buoy data and the organizers of Coastal Dynamics 2013 for soliciting this contribution. A.R. is funded by SHOM; F.A. is funded by ERC grant #240009 “IOWAGA” with additional support from the US National Ocean Partnership Program, under grant N00014-10-1-0383 and Labex Mer via grant ANR-10-LABX-19-01. A. Sepulveda kindly gave feedback on the manuscript draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Ardhuin.

Additional information

Responsible Editor: Bruno Castelle

This article is part of the Topical Collection on the 7th International Conference on Coastal Dynamics in Arcachon, France 24–28 June 2013

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roland, A., Ardhuin, F. On the developments of spectral wave models: numerics and parameterizations for the coastal ocean. Ocean Dynamics 64, 833–846 (2014). https://doi.org/10.1007/s10236-014-0711-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0711-z

Keywords

  • Wave modeling
  • Bottom friction
  • Coupling
  • Wave-current interaction