Skip to main content

Advertisement

Log in

Modeling the morphodynamic response of tidal embayments to sea-level rise

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Sea-level rise has a strong influence on tidal systems, and a major focus of climate change effect studies is to predict the future state of these environmental systems. Here, we used a model to simulate the morphological evolution of tidal embayments and to explore their response to a rising sea level. The model was first used to reproduce the formation of channels and intertidal flats under a stable mean water level in an idealised and initially unchannelled tidal basin. A gradual rise in sea level was imposed once a well-developed channel network had formed. Simulations were conducted with different sea-level rise rates and tidal ranges. Sea-level rise forced headward erosion of the tidal channels, driving a landward expansion of the channel network and channel development in the previously non-inundated part of the basin. Simultaneously, an increase in channel drainage width in the lower part of the basin occurred and a decrease in the overall fraction of the basin occupied by channels could be observed. Sea-level rise thus altered important characteristics of the tidal channel network. Some intertidal areas were maintained despite a rising sea level. However, the size, shape, and location of the intertidal areas changed. In addition, sea-level rise affected the exchange of sediment between the different morphological elements. A shift from exporting to importing sediment as well as a reinforcement of the existing sediment export was observed for the simulations performed here. Sediment erosion in the inlet and the offshore transport of sediment was enhanced, resulting in the expansion of the ebb-tidal delta. Our model results further emphasise that tidal embayments can exhibit contrasting responses to sea-level rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Blum MD, Roberts HH (2009) Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat Geosci 2:488–491. doi:10.1038/NGEO553

    Article  Google Scholar 

  • Boon JD, Byrne RJ (1981) On basin hypsometry and the morphodynamic response of coastal inlet systems. Mar Geol 40:27–48

    Article  Google Scholar 

  • Cohen JE, Small C, Mellinger A, Gallup J, Sachs J (1997) Estimates of coastal populations. Science 278:1209–1213

    Article  Google Scholar 

  • Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7:73–78. doi:10.1890/070219

    Article  Google Scholar 

  • Dastgheib A, Roelvink JA, Wang ZB (2008) Long-term process-based morphological modelling of the Marsdiep Tidal Basin. Mar Geol 256:90–100. doi:10.1016/j.margeo.2008.10.003

    Article  Google Scholar 

  • De Swart HE, Zimmerman JTF (2009) Morphodynamics of tidal inlet systems. Annu Rev Fluid Mech 41:203–229. doi:10.1146/annurev.fluid.010908.165159

    Article  Google Scholar 

  • Dissanayake DMPK, Roelvink JA, van der Wegen M (2009) Modelled channel patterns in a schematized tidal inlet. Coast Eng 56:1069–1083. doi:10.1016/j.coastaleng.2009.08.008

    Article  Google Scholar 

  • Dissanayake DMPK, Ranasinghe R, Roelvink JA (2012) The morphological response of large tidal inlet/basin systems to relative sea level rise. Clim Change 113:253–276. doi:10.1007/s10584-012-0402-z

    Article  Google Scholar 

  • Dronkers J (1998) Morphodynamics of the Dutch Delta. In: Dronkers J, Scheffers MBAM (eds) Physics of estuaries and coastal seas. Balkema, Rotterdam, Netherlands, pp 297–304

    Google Scholar 

  • Dronkers J (2005) Dynamics of coastal systems. World Scientific, Singapore

    Google Scholar 

  • Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial streams. Teknisk Forlag, Copenhagen

    Google Scholar 

  • Fagherazzi S, Bortoluzzi A, Dietrich WE, Adami A, Lanzoni S, Marani M, Rinaldo A (1999) Tidal networks 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resour Res 35:3891–3904

    Article  Google Scholar 

  • French JR (2008) Hydrodynamic modelling of estuarine flood defence realignment as an adaptive management response to sea-level rise. J Coast Res 24:1–12. doi:10.2112/05-0534.1

    Article  Google Scholar 

  • Friedrichs CT, Aubrey DG (1988) Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuarine Coastal Shelf Sci 27:521–545

    Article  Google Scholar 

  • Friedrichs CT, Aubrey DG, Speer PE (1990) Impacts of relative sea-level rise on evolution of shallow estuaries. In: Cheng RT (ed) Residual currents and long-term transport, Coastal and Estuarine Studies 38. Springer, New York, pp 105–122

    Chapter  Google Scholar 

  • Friedrichs CT (2010) Barotropic tides in channelized estuaries. In: Valle-Levinson A (ed) Contemporary issues in estuarine physics. Cambridge University Press, Cambridge, UK, pp 27–61

    Chapter  Google Scholar 

  • Galbraith H, Jones R, Park R, Clough J, Herrod-Julius S, Harrington B, Page G (2002) Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. Waterbirds 25:173–183

    Article  Google Scholar 

  • Gesch DB (2009) Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. J Coast Res 53:49–58. doi:10.2112/SI53-006.1

    Article  Google Scholar 

  • Hibma A, De Vriend HJ, Stive MJF (2003) Numerical modelling of shoal pattern formation in well-mixed elongated estuaries. Estuarine Coastal Shelf Sci 57:981–991. doi:10.1016/S0272-7714(03)00004-0

    Article  Google Scholar 

  • Hodges BR, Imberger J, Saggio A, Winters KB (2000) Modeling basin-scale internal waves in a stratified lake. Limnol Oceanogr 45:1603–1620

    Article  Google Scholar 

  • IPCC (2002) Climate change and biodiversity. IPCC Technical Paper V. IPCC, Geneva

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group І to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jarrett JT (1976) Tidal prism-inlet area relationships. GITI report no. 3. Coastal Engineering Research Center, US Army Corps of Engineers, Fort Belvoir, VA

  • Kirwan ML, Murray AB (2007) A coupled geomorphic and ecological model of tidal marsh evolution. Proc Natl Acad Sci U S A 104:6118–6122. doi:10.1073/pnas.0700958104

    Article  Google Scholar 

  • Kleinhans MG, van der Vegt M, Terwisscha van Scheltinga R, Baar AW, Markies H (2012) Turning the tide: experimental creation of tidal channel networks and ebb deltas. Neth J Geosci 91–3:311–323

    Google Scholar 

  • Knowles N (2010) Potential inundation due to rising sea levels in the San Francisco Bay region. San Francisco Estuary and Watershed Sci 8:1–19

    Google Scholar 

  • Levin LA, Boesch DF, Covich A, Dahm C, Erséus C, Ewel KC, Kneib RT, Moldenke A, Palmer MA, Snelgrove P, Strayer D, Weslawski JM (2001) The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4:430–451. doi:10.1007/s10021-001-0021-4

    Article  Google Scholar 

  • Marciano R, Wang ZB, Hibma A, de Vriend HJ, Defina A (2005) Modeling of channel patterns in short tidal basins. J Geophys Res 110, F01001. doi:10.1029/2003JF000092

  • Milliman JD, Broadus JM, Gable F (1989) Environmental and economic implications of rising sea level and subsiding deltas: the Nile and Bengal examples. Ambio 18:340–345

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, New York

    Google Scholar 

  • Najjar RG, Walker HA, Anderson PJ, Barron EJ, Bord RJ, Gibson JR, Kennedy VS, Knight CG, Megonigal JP, O’Connor RE, Polsky CD, Psuty NP, Richards BA, Sorenson LG, Steele EM, Swanson RS (2000) The potential impacts of climate change on the mid-Atlantic coastal region. Clim Res 14:219–233

    Article  Google Scholar 

  • Nicholls RJ, Hoozemans FMJ, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level-rise: regional and global analyses. Glob Environ Change 9:S69–S87

    Article  Google Scholar 

  • Passalacqua P, Do Trung T, Foufoula-Georgiou E, Sapiro G, Dietrich WE (2010) A geometric framework for channel network extraction from lidar: nonlinear diffusion and geodesic paths. J Geophys Res 115, F01002. doi:10.1029/2009JF001254

  • Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321:1340–1343. doi:10.1126/science.1159099

    Article  Google Scholar 

  • Pilkey OH, Cooper JAG (2004) Society and sea level rise. Science 303:1781–1782. doi:10.1126/science.1093515

    Article  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370. doi:10.1126/science.1135456

    Article  Google Scholar 

  • Ranasinghe R, Duong TM, Uhlenbrook S, Roelvink D, Stive M (2013) Climate-change impact assessment for inlet-interrupted coastlines. Nature Clim Change 3:83–87. doi:10.1038/nclimate1664

    Article  Google Scholar 

  • Rinaldo A, Fagherazzi S, Lanzoni S, Marani M (1999) Tidal networks 2. Watershed delineation and comparative network morphology. Water Resour Res 35:3905–3917

    Article  Google Scholar 

  • Roelvink JA (2006) Coastal morphodynamic evolution techniques. Coast Eng 53:277–287. doi:10.1016/j.coastaleng.2005.10.015

    Article  Google Scholar 

  • Stefanon L, Carniello L, D’Alpaos A, Lanzoni S (2010) Experimental analysis of tidal network growth and development. Cont Shelf Res 30:950–962. doi:10.1016/j.csr.2009.08.018

    Article  Google Scholar 

  • Stefanon L, Carniello L, D’Alpaos A, Rinaldo A (2012) Signatures of sea level changes on tidal geomorphology: Experiments on network incision and retreat. Geophys Research Letters 39, L12402. doi:10.1029/2012GL051953

  • Titus JG, Richman C (2001) Maps of lands vulnerable to sea level rise: modeled elevations along the US Atlantic and Gulf coast. Clim Res 18:205–228

    Article  Google Scholar 

  • Van der Wegen M, Roelvink JA (2008) Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. J Geophys Res 113, C03016. doi:10.1029/2006JC003983

  • Van der Wegen M, Wang ZB, Savenije HHG, Roelvink JA (2008) Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment. J Geophys Res 113, F03001. doi:10.1029/2007JF000898

  • Van der Wegen M (2013) Numerical modeling of the impact of sea level rise on tidal basin morphodynamics. J Geophys Res. doi:10.1002/jgrf.20034

    Google Scholar 

  • Van Goor MA, Zitman TJ, Wang ZB, Stive MJF (2003) Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Mar Geol 202:211–227. doi:10.1016/S0025-3227(03)00262-7

    Article  Google Scholar 

  • Van Maanen B, Coco G, Bryan KR (2011) A numerical model to simulate the formation and subsequent evolution of tidal channel networks. Aust J Civ Eng 9:61–71

    Google Scholar 

  • Van Maanen B, Coco G, Bryan KR (2013) Modelling the effects of tidal range and initial bathymetry on the morphological evolution of tidal embayments. Geomorphology 191:23–34

    Article  Google Scholar 

  • Vlaswinkel BM, Cantelli A (2011) Geometric characteristics and evolution of a tidal channel network in experimental setting. Earth Surf Process Landforms 36:739–752. doi:10.1002/esp.2099

    Article  Google Scholar 

  • Wang ZB (1992) Fundamental considerations on morphodynamic modeling in tidal regions. Rep. Z331, part I, Delft Hydraul., Delft

  • Wang ZB, Jeuken C, De Vriend HJ (1999) Tidal asymmetry and residual sediment transport in estuaries. A literature study and applications to the Western Scheldt. Rep. Z2749, Delft Hydraul., Delft

Download references

Acknowledgements

B.v.M. and G.C. were funded by the (New Zealand) Foundation for Research, Science and Technology. G.C. also acknowledges funding from the “Cantabria Campus Internacional, Augusto Gonzalez Linares Program“. The authors thank the Centre for Water Research (University of Western Australia) for providing the hydrodynamic solver (ELCOM). The National Center for Earth-surface Dynamics is acknowledged for providing the software to extract channel networks. The authors also thank the reviewers for providing detailed and constructive feedback

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barend van Maanen.

Additional information

Responsible Editor: Bob Chant

This article is part of the Topical Collection on Physics of Estuaries and Coastal Seas 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Maanen, B., Coco, G., Bryan, K.R. et al. Modeling the morphodynamic response of tidal embayments to sea-level rise. Ocean Dynamics 63, 1249–1262 (2013). https://doi.org/10.1007/s10236-013-0649-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-013-0649-6

Keywords

Navigation