Skip to main content

Wave climate simulation for southern region of the South China Sea

Abstract

This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484. doi:10.1038/461481a

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng HY, Yamagata T (2007) El Nino Modoki and its possible teleconnection. J Geophys Res 112(C11007). doi:10.1029/2006JC003798

  • Bidlot JR, Li JG, Wittmann P, Faucher M, Chen HS, Lefevre JM, Bruns T, Greenslade D, Ardhuin F, Kohno N, Park S (2007) Gomez M 2007 Inter-comparison of operational wave forecasting systems, 10th International workshop on wave hindcasting and forecasting. Oahu, Hawaii

    Google Scholar 

  • Bosserelle C, Pattiaratchi CB, Haigh I (2012) Inter-annual variability and longer-term changes in the wave climate of Western Australia between 1970 and 2009. Ocean Dyn 62:63–76. doi:10.1007/s10236-011-0487-3

    Article  Google Scholar 

  • Brown JM, Wolf J, Souza AJ (2012) Past to future extreme events in Liverpool Bay: model projections from 1960–2100. Clim Chang 111:65–391. doi:10.1007/s10584-011-0145-2

    Article  Google Scholar 

  • Chawla A, Tolman HL (2007) Automated grid generation for WAVEWATCH III. NOAA/NWS/NCEP/OMB, Technical Note, 254

    Google Scholar 

  • Chawla A, Tolman HL, Lanson JL, Devaliere EM, Gerald VM (2009) Validation of a Multi-Grid WAVEWATCH III™ modeling system. NOAA/MMAB Contribution no. 281

  • Chu PC, Lu S, Liu WT (1999) Uncertainty of South China Sea prediction using NSCAT and national centers for environmental prediction winds during tropical storm Ernie, 1996. J Geophys Res 104(C5):11273–11289. doi:10.1029/1998JC900046

    Article  Google Scholar 

  • Chu PC, Veneziano JM, Fan C, Carron MJ, Liu WT (2000) Response of the South China Sea to tropical Cyclone Ernie 1996. J Geophys Res 105(C6):13991–14009. doi:10.1029/2000JC900035

    Article  Google Scholar 

  • Chu PC, Qi Y, Chen Y, Shi P, Mao Q (2004) South China Sea wind-wave characteristics. Part I: validation of Wavewatch-III using TOPEX/Poseidon data. J Atmos Ocean Technol 21(11):1718–1733. doi:10.1175/JTECH1661.1

    Article  Google Scholar 

  • Chunxia L, Qi Y, Liang J (2008) The effect of sea waves on Typhoon Imodo. 2nd CAWCR Modelling Workshop 2008, High Resolution Modelling (Australia, 25–28 Nov 2008)

  • Cuchiara DC, Fernandes EH, Strauch JC, Winterwerp JC, Calliari LJ (2009) Determination of the wave climate for southern Brazilian shelf. Cont Shelf Res 29:545–555. doi:10.1016/j.csr.2008.09.025

    Article  Google Scholar 

  • Fang G, Kwok YK, Yu K, Zhu Y (1999) Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont Shelf Res 19(7):845–869. doi:10.1016/s0278-4343(99)00002-3

    Article  Google Scholar 

  • Feng M, McPhaden MJ, Lee T (2010) Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean. Geophys Res Lett 37, L09606. doi:10.1029/2010GL042796

    Google Scholar 

  • Hanson JL, Tracy BA, Tolma HL, Scott DR (2009) Pacific hindcast performance of three numerical wave model. J Atmos Ocean Technol 26:1614–1633

    Article  Google Scholar 

  • Hemer MA, Church JA, Hunter JR (2010) Variability and trends in the directional wave climate of the southern hemisphere. Int J Climatol 30:475–491. doi:10.1002/joc.1900

    Google Scholar 

  • IPCC AR4 (2007) Climate change 2007, Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jiang LF, Zhang ZX, Qi YQ (2010) Simulation of SWAN and WAVEWATCH III in Northern South China Sea. 20th International Offshore and Polar Engineering Conference (Beijing, China, 20–25 June 2010)

  • Juneng L, Tangang FT (2005) Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector. Clim Dyn 25:337–350. doi:10.1077/s00382-005-0031-6

    Article  Google Scholar 

  • Juneng L, Tangang FT (2010) Long-term trends of winter monsoon synoptic circulations over the maritime continent: 1962–2007. Atmos Sci Lett 11(3):199–203. doi:10.1002/asl.272

    Article  Google Scholar 

  • Kriiezi EE, Broman B (2008) Past and future wave climate in the Baltic Sea produced by the SWAN model with forcing from the regional climate model RCA of the Rossby Center. In: IEEE/OES US/EU-Baltic International Symposium (eds); (Tallinn, Estonia, 27–29 May 2008), pp 360–366

  • Lau KM, Wu HT, Yang S (1998) Hydrologic processes associated with the first transition of the Asian Summer Monsoon: A pilot satellite study. Bull Am Meteorol Soc 79:1871–1882

    Article  Google Scholar 

  • Lionello P, Sanna A (2005) Mediterranean wave climate variability and its links with NAO and Indian Monsoon. Clim Dyn 25:611–623. doi:10.1007/s00382-005-0025-4

    Article  Google Scholar 

  • Mori N, Yasuda T, Mase H, Tom T, Oku Y (2010) Projection of extreme wave climate change under global warming. Hydrol Res Lett 4:15–19

    Article  Google Scholar 

  • Music S, Nikovic S (2008) 44-year wave hindcast for the Eastern Mediterranean. Coast Eng 55:872–880. doi:10.1016/j.coastaleng.2008.02.024

    Article  Google Scholar 

  • NCEP (2006) National Center for Environmental Prediction, Washington DC. available at http://polar.ncep.noaa.gov/waves

  • NGDC (2006) National Geophysical Data Center. Available at http://ngdc.noaa.gov/mgg/global/etopo2.html

  • Padilla-Hernandez R, Perrie W, Toulany B, Smith PC, Zhang W, Jimenez-Hernandez S (2004) Intercomparison of modern operational wave models. 8th International workshop on wave hindcasting and forecasting (North Shore, Oahu, Hawaii)

  • Panchang VG, Jeong C, Li D (2008) Wave climatology in coastal Maine for aquaculture and other applications. Estuaries and Coast. J CERF 31:289–299. doi:10.1007/s12237-007-9016-5

    Google Scholar 

  • Qi YQ, Zhang ZX, SHI P (2010) Extreme wind, wave and current in deep water of South China Sea. Int J Offshore Polar Eng 20(1):18–23

    Google Scholar 

  • Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang H, Juang HMH, Sela J, Iredell M, Treadon R, Kleist D, van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higginsz W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Salahuddin A, Curtis S (2011) Climate extremes in Malaysia and the equatorial South China Sea. Glob Planet Chang 78:83–91. doi:10.1016/j.gloplacha.2011.05.001

    Article  Google Scholar 

  • Swail VR, Cox AT, Cardone VJ (1999) Analysis of wave climate trends and variability. WMO Workshop on Advances in Marine Climatology (CLIMAR99), 8–15 September 1999, Vancouver, B.C. p: 245–256

  • Tolman HL (2002) Validation of WAVEWATCH III version 1.15 for a global domain. NCEP/NOAA/NWS, National Centers for Environmental Prediction, Technical note 213, Washington

  • Tolman HL (2009) User manual and system documentation of WAVEWATCH III TM version 3.14. NOAA/NWS/NCEP/MMAB Technical Note 276

  • WAMDI (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810

    Article  Google Scholar 

  • Wang XL, Swail VR (2006) Trends of Atlantic wave extremes as simulated in a 40-yr wave hindcast using kinematically reanalyzed wind fields. J Clim 15:1020–1035. doi:10.1175/1520-0442(2002)015<1020:TOAWEA>2.0.CO;2

    Article  Google Scholar 

  • Wang XL, Zwiers FW, Swail VR (2004) North Atlantic Ocean wave climate change scenarios for the twenty-first century. J Clim. doi:10.1175/1520-0442

    Google Scholar 

  • Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Clim Dyn 29:113–129. doi:10.1007/s00382-007-0234-0

    Article  Google Scholar 

  • Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 29:113–129. doi:10.1007/s00382-008-0394-6

    Article  Google Scholar 

  • Wolf J, Prandle D (1999) Some observation of wave–current interaction. Coast Eng 37:471–485

    Article  Google Scholar 

  • Wright LD, Boon JD, Kim SC, List JH (1991) Modes of cross-shore sediment transport on the shoreface of the Middle Atlantic Bight. Mar Geol 96:19–51. doi:10.1016/0025-3227(91)90200-N

    Article  Google Scholar 

  • Xue Y, Huang B, Hu ZZ, Kumar A, Wen C, Behringer D, Nadiga S (2010) An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn. doi:10.1007/s00382-010-0954-4

    Google Scholar 

  • Young IR (1999) Seasonal variability of the global ocean wind and wave climate. Int J Climatol 19:931–950

    Article  Google Scholar 

  • Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science. doi:10.1126/science.1197219

    Google Scholar 

  • Zacharioudaki A, Pan S, Simmonds D (2011) Future wave climate over the west-European shelf seas. Ocean Dyn 61:807–827. doi:10.1007/s10236-011-0395-6

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the grants of MOHE LRGS/TD/2011/UKM/PG/01, MOSTI Science fund 04-01-02-SF0747 and Universiti Kebangsaan Malaysia DIP-2012-020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredolin Tangang.

Additional information

Responsible Editor: Roger Proctor

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mirzaei, A., Tangang, F., Juneng, L. et al. Wave climate simulation for southern region of the South China Sea. Ocean Dynamics 63, 961–977 (2013). https://doi.org/10.1007/s10236-013-0640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-013-0640-2

Keywords

  • South China Sea
  • WAVEWATCH III™
  • Significant wave height
  • Niño3.4
  • El Niño Modoki