Advertisement

Ocean Dynamics

, Volume 63, Issue 8, pp 943–959 | Cite as

Optimal boundary conditions for ORCA-2 model

  • Eugene KazantsevEmail author
Article

Abstract

A 4D-Var data assimilation technique is applied to ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of boundary conditions on the solution is analyzed both within and beyond the assimilation window. It is shown that the optimal bottom and surface boundary conditions allow us to better represent the jet streams, such as Gulf Stream and Kuroshio. Analyzing the reasons of the jets reinforcement, we notice that data assimilation has a major impact on parametrization of the bottom boundary conditions for u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.

Keywords

Variational data assimilation Boundary conditions ORCA-2 model 

Notes

Acknowledgments

The author would like to express his gratitude to Arthur Vidard for providing the ORCA-2 configuration of the NEMO accompanied by forcings and observational data and to Igor Gejadze from for his helpful comments and suggestions.

All the contour pictures have been prepared by the Grid Analysis and Display System (GrADS) developed in the Center for Ocean–Land–Atmosphere Interactions, Department of Meteorology, University of Maryland.

References

  1. Barnier B, Madec G, Penduff T, Molines JM, Treguier AM, Sommer JL, Beckmann A, Biastoch A, Boning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J , Cuevas BD (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56(5–6):543–567Google Scholar
  2. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  3. Brasseur P, Verron J (2006) The seek filter method for data assimilation in oceanography: a synthesis. Ocean Dyn 56(5–6):650–661CrossRefGoogle Scholar
  4. Broquet G, Edwards C, Moore A, Powell B, Veneziani M, Doyle J (2009) Application of 4D-variational data assimilation to the California current system. Dyn Atmos Oceans 48(13):69–92CrossRefGoogle Scholar
  5. Castaings W, Dartus D, Honnorat M, Le Dimet FX, Loukili Y, Monnier J (2006) Automatic differentiation: a tool for variational data assimilation and adjoint sensitivity analysis for flood modeling. In: Backer M, Corliss G, Naumann U, Hovland P, Norris B(eds) Automatic differentiation: applications, theory, and implementations, lecture notes in computational science and engineering, vol 50. Springer, Berlin, pp 249–262CrossRefGoogle Scholar
  6. Chertok D, Lardner R (1996) Variational data assimilation for a nonlinear hydraulic model. Appl Math Model 20(9):675–682CrossRefGoogle Scholar
  7. Christakos G (2005) Methodological development in geophysical assimilation modeling. Rev Geophys 43(2) doi: 10.1029/2004RG000163
  8. Colberg F, Reason CJ (2007) Ocean model diagnosis of low-frequency climate variability in the South Atlantic region. J Clim 20(6):1016–1034CrossRefGoogle Scholar
  9. Gaspar P, Grégoris Y, Lefevre JM (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at station papa and long-term upper ocean study site. J Geophys Res 95(C9). doi: 10.1029/JC095iC09p16179
  10. Gejadze I, Copeland G (2006) Open boundary control for Navier–Stokes equations including a free surface: adjoint sensitivity analysis. Comput Math Appl 52:1243–1268CrossRefGoogle Scholar
  11. Gejadze I, Copeland G, Navon I (2006) Open boundary control for Navier–Stokes equations including a free surface: data assimilation. Comput Math Appl 52:1269–1288CrossRefGoogle Scholar
  12. Gilbert J, Lemarechal C (1989) Some numerical experiments with variable storage quasi-Newton algorithms. Math Program 45:407–435CrossRefGoogle Scholar
  13. Griewank A (1992) Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optim Method Softw 1:35–54CrossRefGoogle Scholar
  14. Hascoët L, Pascual V (2004) Tapenade 2.1 user’s guide. Tech Rep 0300, INRIA. http://www.inria.fr/rrrt/rt-0300.html
  15. Heemink AW, Mouthaana EEA, Roesta MRT, Vollebregta EAH, Robaczewskab KB, Verlaanb M (2002) Inverse 3D shallow water flow modelling of the continental shelf. Cont Shelf Res 22:465–484CrossRefGoogle Scholar
  16. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65(1–4):158–175CrossRefGoogle Scholar
  17. Janisková M, Thépaut JN, Geleyn JF (1999) Simplified and regular physical parameterizations for incremental four-dimensional variational assimilation. Mon Weather Rev 127:26–45CrossRefGoogle Scholar
  18. Kazantsev E (2009) Identification of optimal topography by variational data assimilation. J Phys Math 1:1–23. http://www.ashdin.com/journals/jpm/2009/S090702.aspx CrossRefGoogle Scholar
  19. Kazantsev E (2010) Identification of an optimal boundary approximation by variational data assimilation. J Comput Phys 229(2):256–275CrossRefGoogle Scholar
  20. Kazantsev E (2011) Optimal boundary discretisation by variational data assimilation. Int J Numer Methods Fluids 65(10):1231–1259. doi: 10.1002/fld.2240. http://hal.inria.fr/inria-00388862/fr/ CrossRefGoogle Scholar
  21. Kazantsev E (2012a) Boundary conditions control for a shallow-water model. Int J Numer Methods Fluids 68(5):625–641. doi: 10.1002/fld.2526. http://hal.inria.fr/hal-00764540 CrossRefGoogle Scholar
  22. Kazantsev E (2012b) Sensitivity of a shallow-water model to parameters. Nonlinear Anal Ser B Real World Appl 13(3):1416–1428. doi: 10.1016/j.nonrwa.2011.11.006. http://hal.inria.fr/hal-00652299/fr/ CrossRefGoogle Scholar
  23. Lazar A, Madec G, Delecluse P (1999) The deep interior downwelling, the Veronis effect, and mesoscale tracer transport parameterizations in an OGCM. J Phys Oceanogr 29(11):2945–2961CrossRefGoogle Scholar
  24. Le Dimet FX (1982) A general formalism of variational analysis. Tech. Rep. OK 73091, CIMMS report, NormannGoogle Scholar
  25. Le Dimet FX, Ouberdous M (1993) Retrieval of balanced fields: an optimal control method. Tellus A 45(5):449–461CrossRefGoogle Scholar
  26. Le Dimet FX, Talagrand O (1986) Variational algorithm for analysis and assimilation of meteorological observations. Theoretical aspects. Tellus 38A:97–110CrossRefGoogle Scholar
  27. Lellouche J, Devenon J, Dekeyser I (1994) Boundary control on Burgers equation. A numerical approach. Comput Math Appl 28:33–44CrossRefGoogle Scholar
  28. Leredde Y, Lellouche JM, Devenon JL, Dekeyser I (1998) On initial, boundary conditions and viscosity coefficient control for Burgers equation. Int J Numer Methods Fluids 28(1):113–128CrossRefGoogle Scholar
  29. Losch M, Wunsch C (2003) Bottom topography as a control variable in an oceanb model. J Atmos Ocean Technol 20:1685–1696CrossRefGoogle Scholar
  30. Madec G, the NEMO team (2012) NEMO ocean engine. Tech. Rep. 27, Note du Pôle de modélisation de l’Institut Pierre Simon LaplaceGoogle Scholar
  31. Madec G, Delecluse P, Imbard M, Levy C (1998) OPA 8.1 ocean general circulation model reference manual. Tech. Rep. 11, Institut Pierre Simon LaplaceGoogle Scholar
  32. Marchuk G, Penenko V (1979) Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment. In: Marchukm G(ed) Modelling and optimization of complex system, lecture notes in control and information sciences, vol 18. Springer, Berlin, pp 240–252. doi: 10.1007/BFb0004167 CrossRefGoogle Scholar
  33. Mesinger F, Arakawa A (1976) Numerical methods used in atmospheric models. GARP Publication Series No 17Google Scholar
  34. Navon IM (1997) Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dyn Atmos Oceans 27:55–79CrossRefGoogle Scholar
  35. Panchang V, O’Brien J (1988) On the determination of hydraulic model parameters using the strong constraint formulation modeling marine systems, vol 1, chap 1. CRC, Boca Raton, pp 5–18Google Scholar
  36. Penenko VV, Obraztsov NN (1976) A variational initialization method for the fields of the meteorological elements. Meteorol Gidrol (Sov Meteorol Hydrol) 11:1–11. (English translation)Google Scholar
  37. Raynaud S, Orr JC, Aumont O, Rodgers KB, Yiou P (2006) Interannual-to-decadal variability of North Atlantic air-sea CO2 fluxes. Ocean Sci 2(1):43–60CrossRefGoogle Scholar
  38. Richardson P (1985) Average velocity and transport of the Gulf Stream near 55°W. J Mar Res 43(1):83–111CrossRefGoogle Scholar
  39. Roullet G, Madec G (2000) Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res 105(23):927–942Google Scholar
  40. Sasaki Y (1958) An objective analysis based on the variational method. J Meteorol Soc Jpn 36:1–12Google Scholar
  41. Sasaki Y (1970) Some basic formalisms in numerical variational analysis. Mon Weather Rev 98:875–883CrossRefGoogle Scholar
  42. Shulman I (1997) Local data assimilation in specification of open boundary conditions. J Atmos Ocean Technol 14:1409–1419CrossRefGoogle Scholar
  43. Shulman I, Lewis JK, Blumberg AF, Kim BN (1998) Optimized boundary conditions and data assimilation with application to the M2 tide in the Yellow Sea. J Atmos Ocean Technol 15(4):1066–1071CrossRefGoogle Scholar
  44. Taillandier V, Echevin V, Mortier L, Devenon JL (2004) Controlling boundary conditions with a four-dimensional variational data-assimilation method in a non-stratified open coastal model. Ocean Dyn 54(2):284–298CrossRefGoogle Scholar
  45. Tber MH, Hascoët L, Vidard A, Dauvergne B (2007) Building the tangent and adjoint codes of the ocean general circulation model OPA with the automatic differentiation tool Tapenade. Res Rep 6372, INRIA. https://hal.inria.fr/inria-00192415
  46. ten Brummelhuis PGJ, Heemink AW, van den Boogaard HFP (1993) Identification of shallow sea models. Int J Numer Methods Fluids 17:637–665CrossRefGoogle Scholar
  47. Zou X, Navon I, Le Dimet FX (1992) An optimal nudging data assimilation scheme using parameter estimation. Q J Roy Meteor Soc 118:1163–1186CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.INRIA, Projet MOISELaboratoire Jean KuntzmannBP 53France

Personalised recommendations