Skip to main content
Log in

Flow-through PSICAM: a new approach for determining water constituents absorption continuously

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Determination of spectral absorption coefficients in seawater is of interest for biologic oceanographers for various reasons, but faces also several problems, especially if continuous measurements are required. We introduce the flow-through point-source integrating cavity absorption meter (ft-PSICAM) as a new tool for the continuous measurement of spectral absorption coefficients in a range of 400–710 nm. A description of the system is given and its performance in comparison with a conventional PSICAM has been evaluated on two cruises in 2011 in the southern part of the North Sea (German Bight). Furthermore, factors influencing the measurement are discussed. When comparing the data of both systems, a good linear correlation has been found for all wavelengths (r 2 > 0.91). Deviations between systems were different with respect to the wavelength examined with slopes of linear fits between 1.1 and 1.65 and offsets between −0.1 and 0.01, with the higher values at shorter wavelengths. They were caused mainly due to contamination of the flow-through system during operation by phytoplankton particles. Focus was also laid on the measurement of chlorophyll-a concentrations ([chl-a]) and total suspended matter concentrations ([TSM]) on the basis of absorption coefficient determination. For this, appropriate relationships were established and [chl-a] and [TSM] values were calculated from the relevant ft-PSICAM absorption coefficients. Their progression matches well with the progression of fluorescence and turbidity measurements made in parallel. In conclusion, the ft-PSICAM is successful in measuring spectral absorption coefficients continuously and resolving relative changes in seawater optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Babin M, Stramski D, Ferrari GM, Claustre H, Bricaud A, Obolensky G, Hoepffner N (2003) Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res Oceans 108(C7):1–20. doi:10.1029/2001jc000882

    Article  Google Scholar 

  • Bowers DG, Binding CE (2006) The optical properties of mineral suspended particles: a review and synthesis. Estuarine Coastal Shelf Sci 67(1–2):219–230. doi:10.1016/j.ecss.2005.11.010

    Article  Google Scholar 

  • Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton—analysis and parameterization. J Geophys Res Oceans 100(C7):13321–13332. doi:10.1029/95jc00463

    Article  Google Scholar 

  • Bricaud A, Morel A, Babin M, Allali K, Claustre H (1998) Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. J Geophys Res Oceans 103(C13):31033–31044. doi:10.1029/98jc02712

    Article  Google Scholar 

  • Buiteveld H, Hakvoort JHM, Donze M (1994) The optical properties of pure water. Ocean Opt. doi:10.1117/12.190060

    Google Scholar 

  • Cullen JJ, Ciotti AM, Davis RF, Lewis MR (1997) Optical detection and assessment of algal blooms. Limnol Oceanogr 42(5):1223–1239

    Article  Google Scholar 

  • Devred E, Sathyendranath S, Stuart V, Platt T (2011) A three component classification of phytoplankton absorption spectra: application to ocean-color data. Remote Sens Environ 115(9):2255–2266. doi:10.1016/j.rse.2011.04.025

    Article  Google Scholar 

  • Elterman P (1970) Integrating cavity spectroscopy. Appl Optics 9(9):2140–2142. doi:10.1364/ao.9.002140

    Article  Google Scholar 

  • Finkel ZV, Irwin AJ (2001) Light absorption by phytoplankton and the filter amplification correction: cell size and species effects. J Exp Mar Biol Ecol 259(1):51–61

    Article  Google Scholar 

  • Fry ES, Kattawar GW, Pope RM (1992) Integrating cavity absorption meter. Appl Optics 31(12):2055–2065

    Article  Google Scholar 

  • Gray DJ, Kattawar GW, Fry ES (2006) Design and analysis of a flow-through integrating cavity absorption meter. Appl Optics 45(35):8990–8998

    Article  Google Scholar 

  • Hoepffner N, Sathyendranath S (1992) Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic. Limnol Oceanogr 37(8):1660–1679

    Article  Google Scholar 

  • Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulseamplitude-modulated and fast-repetition-rate fluorometry. J Phycol 43(6):1236–1251

    Article  Google Scholar 

  • Kirk JTO (1976) Theoretical analysis of contribution of algal cells to attenuation of light within natural waters. III. Cylindrical and spheiodal cells. New Phytol 77(2):341–358

    Article  Google Scholar 

  • Kirk JTO (1994) Light & photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kirk JTO (1997) Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling. Appl Optics 36(24):6123–6128

    Article  Google Scholar 

  • Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37(2):634–642

    Google Scholar 

  • Leathers RA, Downes TV, Davis CO (2000) Analysis of a point-source integrating-cavity absorption meter. Appl Optics 39(33):6118–6127

    Article  Google Scholar 

  • Lerebourg CJY, Pilgrim DA, Ludbrook GD, Neal R (2002) Development of a point source integrating cavity absorption meter. J Opt A Pure Appl Opt 4(4):S56–S65

    Article  Google Scholar 

  • Maske H, Haardt H (1987) Quantitative in vivo absorption spectra of phytoplankton—detrital absorption and comparison with fluorescence excitation spectra. Limnol Oceanogr 32(3):620–633

    Article  Google Scholar 

  • Millie DF, Schofield OME, Kirkpatrick GJ, Johnsen G, Evens TJ (2002) Using absorbance and fluorescence spectra to discriminate microalgae. Eur J Phycol 37(3):313–322. doi:10.1017/s0967026202003700

    Article  Google Scholar 

  • Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res A Oceanogr Res Pap 28(11):1375–1393

    Article  Google Scholar 

  • Musser JA, Fry ES, Gray DJ (2009) Flow-through integrating cavity absorption meter: experimental results. Appl Optics 48(19):3596–3602

    Article  Google Scholar 

  • Nelson NB, Siegel DA (2013) The global distribution and dynamics of chromophoric dissolved organic matter. Ann Rev Mar Sci 5:447–476

    Article  Google Scholar 

  • Pegau WS, Cleveland JS, Doss W, Kennedy CD, Maffione RA, Mueller JL, Stone R, Trees CC, Weidemann AD, Wells WH, Zaneveld JRV (1995) A comparison of methods for the measurement of the absorption coefficient in natural waters. J Geophys Res Oceans 100(C7):13201–13220. doi:10.1029/95jc00456

    Article  Google Scholar 

  • Petersen W, Schroeder F, Bockelmann FD (2011) FerryBox—application of continuous water quality observations along transects in the North Sea. Ocean Dyn 61(10):1541–1554. doi:10.1007/s10236-011-0445-0

    Article  Google Scholar 

  • Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36(33):8710–8723. doi:10.1364/ao.36.008710

    Article  Google Scholar 

  • Roesler CS (1998) Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique. Limnol Oceanogr 43(7):1649–1660

    Article  Google Scholar 

  • Roesler CS, Perry MJ, Carder KL (1989) Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol Oceanogr 34(8):1510–1523

    Article  Google Scholar 

  • Röttgers R, Doerffer R (2007) Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter. Limnol Oceanogr Methods 5:126–135

    Article  Google Scholar 

  • Röttgers R, Schönfeld W, Kipp PR, Doerffer R (2005) Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies. Appl Opt 44(26):5549–5560

    Article  Google Scholar 

  • Röttgers R, Häse C, Doerffer R (2007) Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence. Limnol Oceanogr Methods 5:1–12

    Article  Google Scholar 

  • Sathyendranath S, Lazzara L, Prieur L (1987) Variations in the spectral values of specific absorption of phytoplankton. Limnol Oceanogr 32(2):403–415

    Article  Google Scholar 

  • Schlitzer R (2011) Ocean Data View, http://odv.awi.de

  • Slade WH, Boss E, Dall'Olmo G, Langner MR, Loftin J, Behrenfeld MJ, Roesler C, Westberry TK (2010) Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation. J Atmos Ocean Technol 27(10):1733–1746. doi:10.1175/2010jtecho755.1

    Article  Google Scholar 

  • Staehr PA, Markager S, Sand-Jensen K (2004) Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters. Mar Ecol Prog Ser 275:115–128

    Article  Google Scholar 

  • Stavn RH, Rick HJ, Falster AV (2009) Correcting the errors from variable sea salt retention and water of hydration in loss on ignition analysis: implications for studies of estuarine and coastal waters. Estuarine Coastal Shelf Sci 81(4):575–582

    Article  Google Scholar 

  • Tassan S, Ferrari GM (1995) An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol Oceanogr 40(8):1358–1368

    Article  Google Scholar 

  • Tilstone GH, Peters SWM, van der Woerd HJ, Eleveld MA, Ruddick K, Schönfeld W, Krasemann H, Martinez-Vicente V, Blondeau-Patissier D, Röttgers R, Sørensen K, Jørgensen PV, Shutler JD (2012) Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel Coastal Waters. Remote Sens Environ 118:320–338

    Article  Google Scholar 

  • Twardowski MS, Sullivan JM, Donaghay PL, Zaneveld JRV (1999) Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9. J Atmos Ocean Technol 16(6):691–707. doi:10.1175/1520-0426(1999)016<0691:mqotab>2.0.co;2

    Article  Google Scholar 

  • Van der Linde DW (1998) Protocol for determination of total suspended matter in oceans and coastal zones. CEC-JRC-Ispra Technical note no. I.98:182 pp

  • Yentsch CS (1962) Measurement of visible light absorption by particulate matter in the ocean. Limnol Oceanogr 7(2):207–217

    Article  Google Scholar 

  • Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C-8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45. doi:10.3354/meps195029

    Article  Google Scholar 

Download references

Acknowledgments

We thank Kerstin Heymann for the HPLC analysis of the water samples and the gravimetric measurements of TSM. This work was supported by the EU-PROTOOL project (ENV.2008.3.1.6.1. Development of automated sensing technologies for estuaries, coastal areas, and seas). Furthermore, we want to thank the reviewers for their comments helping to improve this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Wollschläger.

Additional information

Responsible Editor: Jörg-Olaf Wolff

Appendix

Appendix

Table 1 Abbreviations used in the text

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollschläger, J., Grunwald, M., Röttgers, R. et al. Flow-through PSICAM: a new approach for determining water constituents absorption continuously. Ocean Dynamics 63, 761–775 (2013). https://doi.org/10.1007/s10236-013-0629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-013-0629-x

Keywords

Navigation