Skip to main content

Advertisement

Log in

Impact of horizontal eddy diffusivity on Lagrangian statistics for coastal pollution from a major marine fairway

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Lagrangian trajectory methods are often applied as deterministic transport models, where transport is due strictly to advection without taking into account stochastic elements of particle dispersion, which raises questions about validity of the model results. The present work investigates the impact of horizontal eddy diffusivity for a case study of coastal pollution in the Gulf of Finland, where the pollutants are assumed to originate from a major fairway and are transported to the coast by surface currents. Lagrangian trajectories are calculated using the TRACMASS model from velocity fields calculated by the Rossby Centre circulation model for 1982 to 2001. Three cases are investigated: (1) trajectory calculation without eddy diffusivity, (2) stochastic modelling of eddy diffusivity with a constant diffusion coefficient and (3) stochastic modelling of eddy diffusivity with a time- and space-variable diffusion coefficient. It is found that the eddy diffusivity effect increases the spreading rate of initially closely packed trajectories and the number of trajectories that eventually reach the coast. The pattern of most frequently hit coastal sections, the probability of hit to each such section and the time the pollution spends offshore are virtually invariant with respect to inclusion of eddy diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albretsen J, Røed LP (2010) Decadal simulations of mesoscale structures in the northern North Sea/Skagerrak using two ocean models. Ocean Dyn 60:933–955

    Article  Google Scholar 

  • Alenius P, Nekrasov A, Myrberg K (2003) The baroclinic Rossby-radius in the Gulf of Finland. Cont Shelf Res 23:563–573

    Article  Google Scholar 

  • Andrejev O, Sokolov A, Soomere T, Värv R, Viikmäe B (2010) The use of high resolution bathymetry for circulation modelling in the Gulf of Finland. Estonian J Eng 16:187–210

    Article  Google Scholar 

  • Andrejev O, Soomere T, Sokolov A, Myrberg K (2011) The role of the spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia 53(1-TI):309–334

    Article  Google Scholar 

  • Bogucki DJ, Jones BH, Carr M-E (2005) Remote measurements of horizontal eddy diffusivity. J Atm Ocean Technol 22:1373–1380

    Article  Google Scholar 

  • Brickman D, Smith PC (2002) Lagrangian stochastic modelling in coastal oceanography. J Atmos Oceanic Tech 19:83–99

    Article  Google Scholar 

  • Chrastansky A, Callies U (2009) Model-based long-term reconstruction of weather-driven variations in chronic oil pollution along the German North Sea coast. Mar Pollut Bull 58:967–975

    Article  Google Scholar 

  • de Vries P, Döös K (2001) Calculating Lagrangian trajectories using time-dependent velocity fields. J Atmos Ocean Technol 18:1092–1101

    Article  Google Scholar 

  • Delpeche-Ellmann NC, Soomere T (2013) Investigating the marine protected areas most at risk of current-driven pollution in the Gulf of Finland, the Baltic Sea, using a Lagrangian transport model. Mar Pollut Bull. doi:10.1016/j.marpolbul.2012.11.025

    Google Scholar 

  • Dimou K, Adams E (1993) A random-walk, particle tracking model for well-mixed estuaries and coastal waters. Estuar Coast Shelf Sci 37:99–110

    Article  Google Scholar 

  • Döös K (1995) Inter-ocean exchange of water masses. J Geophys Res 100:C13499–C13514

    Article  Google Scholar 

  • Döös K, Engqvist A (2007) Assessment of water exchange between a discharge region and the open sea—a comparison of different methodological concepts. Estuar Coast Shelf Sci 74:585–597

    Article  Google Scholar 

  • Döös K, Nycander J, Coward AC (2008) Lagrangian decomposition of the Deacon Cell. J Geophys Res 113, C07028

    Article  Google Scholar 

  • Döös K, Rupolo V, Brodeau L (2011) Dispersion of surface drifters and model-simulated trajectories. Ocean Model 39:301310

    Article  Google Scholar 

  • Engqvist A, Döös K, Andrejev O (2006) Modeling water exchange and contaminant transport through a Baltic coastal region. Ambio 35:435–447

    Article  Google Scholar 

  • Gerdes R, Köberle C, Willebrand J (1991) The influence of numerical advection schemes on the results of ocean general circulation models. Clim Dyn 5:211–226

    Article  Google Scholar 

  • Gräwe U, Wolff J-O (2010) Suspended particulate matter dynamics in a particle framework. Envir Fluid Mech 10:21–39

    Article  Google Scholar 

  • Gräwe U (2011) Implementation of high-order particle-tracking schemes in a water column model. Ocean Model 36:80–89

    Article  Google Scholar 

  • Haidvogel DB, Beckmann A (1999) Numerical ocean circulation modeling. Imperial College Press, London, 344 pp

    Google Scholar 

  • Havens H, Luther ME, Meyers SD, Heil CA (2010) Lagrangian particle tracking of a toxic dinoflagellate bloom within the Tampa Bay estuary. Mar Pollut Bull 60:2233–2241

    Article  Google Scholar 

  • Hunter JR, Craig PD, Phillips HE (1993) On the use of random walk models with spatially variable diffusivity. J Comp Phys 106:366–376

    Google Scholar 

  • Jönsson B, Lundberg P, Döös K (2004) Baltic sub-basin turnover times examined using the Rossby Centre Ocean Model. Ambio 23:257–260

    Google Scholar 

  • Killworth P, Stainforth D, Webb D, Paterson S (1991) The development of a free-surface Bryan-Cox-Semtner ocean model. J Phys Oceanogr 21:1333–1348

    Article  Google Scholar 

  • Korotenko KA, Mamedov RM, Kontar AE, Korotenko LA (2004) Particle tracking method in the approach for prediction of oil slick transport in the sea: modelling oil pollution resulting from river input. J Marine Syst 48:159–170

    Article  Google Scholar 

  • Levine RC (2005) Changes in shelf waters due to air-sea fluxes and their influence on the Arctic Ocean circulation as simulated in the OCCAM global ocean model. PhD thesis, University of Southampton, Faculty of Engineering Science and Mathematics, School of Ocean and Earth Science, 225 pp

  • Mariani P, MacKenzie BR, Iudicone D, Bozec A (2010) Modelling retention and dispersion mechanisms of bluefin tuna eggs and larvae in the northwest Mediterranean Sea. Progr Oceanogr 86:45–58

    Article  Google Scholar 

  • Meier HEM (2001) On the parameterization of mixing in three-dimensional Baltic Sea models. J Geophys Res 106:C30997–C31016

    Article  Google Scholar 

  • Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74(4):610–627

    Article  Google Scholar 

  • Meier HEM, Höglund A (2012) Environmentally safe areas and routes in the Baltic Proper using Eulerian tracers. Mar Pollut Bull 64:1375–1385

    Article  Google Scholar 

  • Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow. J Geophys Res 108(C8):3273

    Article  Google Scholar 

  • Myrberg K, Ryabchenko V, Isaev A, Vankevich R, Andrejev O, Bendtsen J, Erichsen A, Funkquist L, Inkala A, Neelov I, Rasmus K, Rodriguez Medina M, Raudsepp U, Passenko J, Söderkvist J, Sokolov A, Kuosa H, Anderson TR, Lehmann A, Skogen MD (2010) Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. Boreal Environ Res 15(5):453–479

    Google Scholar 

  • Okubo A (1971) Oceanic diffusion diagrams. Deep-Sea Res 18:789–802

    Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre regional climate model RCA3: model description and performance. Tellus A 63:4–23

    Article  Google Scholar 

  • Shah SHAM, Heemink AW, Deleersnijder E (2011) Assessing Lagrangian schemes for simulating diffusion on non-flat isopycnal surfaces. Ocean Model 39:351–361

    Article  Google Scholar 

  • Soomere T, Viikmäe B, Delpeche N, Myrberg K (2010) Towards identification of areas of reduced risk in the Gulf of Finland. Proc Estonian Acad Sci 59:156–165

    Article  Google Scholar 

  • Soomere T, Andrejev O, Myrberg K, Sokolov A (2011a) The use of Lagrangian trajectories for the identification of the environmentally safe fairways. Mar Pollut Bull 62:1410–1420

    Article  Google Scholar 

  • Soomere T, Berezovski M, Quak E, Viikmäe B (2011b) Modelling environmentally friendly fairways using Lagrangian trajectories: a case study for the Gulf of Finland, the Baltic Sea. Ocean Dyn 61:1669–1680

    Article  Google Scholar 

  • Soomere T, Delpeche N, Viikmäe B, Quak E, Meier HEM, Döös K (2011c) Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Environ Res 16(Suppl A):49–63

    Google Scholar 

  • Soomere T, Viidebaum V, Kalda J (2011d) On dispersion properties of surface motions in the Gulf of Finland. Proc Estonian Acad Sci 60(4):269–279

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Wea Rev 91(3):99–164

    Article  Google Scholar 

  • Stevens DP (1991) A numerical ocean circulation model of the Norwegian and Greenland Seas. Prog Oceanogr 27(3–4):365–402

    Article  Google Scholar 

  • Stommel H (1949) Horizontal diffusion due to oceanic turbulence. J Marine Res 8:199–255

    Google Scholar 

  • Sundermeyer MA, Ledwell JR (2001) Lateral dispersion over the continental shelf: analysis of dye release experiments. J Geophys Res 106(5):9603–9621

    Article  Google Scholar 

  • Viikmäe B, Soomere T, Viidebaum M, Berezovski M (2010) Temporal scales for transport patterns in the Gulf of Finland. Estonian J Eng 16:211–227

    Article  Google Scholar 

  • Visser AW (1997) Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Marine Ecol Progr Series 158:275–281

    Article  Google Scholar 

  • Visser AW (2008) Lagrangian modelling of plankton motion: from deceptively simple random walks to Fokker-Planck and back again. J Marine Syst 70:287–299

    Article  Google Scholar 

  • Webb DJ, Coward AC, de Cuevas BA, Gwilliam CS (1997) A multiprocessor ocean circulation model using message passing. J Atmos Oceanic Technol 14:175–183

    Article  Google Scholar 

  • Yoon J-H, Kawano S, Igawa S (2010) Modeling of marine litter drift and beaching in the Japan Sea. Mar Pollut Bull 60:448–463

    Article  Google Scholar 

Download references

Acknowledgments

This work, motivated by the BONUS+ project BalticWay, was supported by the European Union through the Mobilitas grant MTT63 and through support to the Estonian Centre of Excellence for Non-linear Studies (CENS) from the European Regional Development Fund, targeted financing by the Estonian Ministry of Education and Research (grant SF0140007s11) and the Estonian Science Foundation (grant no. 9125). We are grateful to Anders Höglund (SMHI) who extracted and prepared the RCO model data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Viikmäe.

Additional information

Responsible Editor: Martin Verlaan

Based on the presentation “Spatial Pattern of Hits to the Nearshore from a Major Marine Highway in the Gulf of Finland” to the 16th Biennial Workshop of the Joint Numerical Sea Modelling Group (JONSMOD)

This article is part of the Topical Collection on the 16th biennial workshop of the Joint Numerical Sea Modelling Group (JONSMOD) in Brest, France 21-23 May 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viikmäe, B., Torsvik, T. & Soomere, T. Impact of horizontal eddy diffusivity on Lagrangian statistics for coastal pollution from a major marine fairway. Ocean Dynamics 63, 589–597 (2013). https://doi.org/10.1007/s10236-013-0615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-013-0615-3

Keywords

Navigation