On the dynamics of strait flows: an ocean model study of the Aleutian passages and the Bering Strait


A high-resolution numerical ocean circulation model of the Bering Sea (BS) is used to study the natural variability of the BS straits. Three distinct categories of strait dynamics have been identified: (1) Shallow passages such as the Bering Strait and the Unimak Passage have northward, near barotropic flow with periodic pulses of larger transports; (2) wide passages such as Near Straits, Amukta Pass, and Buldir Pass have complex flow patterns driven by the passage of mesoscale eddies across the strait; and (3) deep passages such as Amchitka Pass and Kamchatka Strait have persistent deep return flows opposite in direction to major surface currents; the deep flows persist independent of the local wind. Empirical orthogonal function analyses reveal the spatial structure and the temporal variability of strait flows and demonstrate how mesoscale variations in the Aleutian passages influence the Bering Strait flow toward the Arctic Ocean. The study suggests a general relation between the barotropic and baroclinic Rossby radii of deformations in each strait, and the level of flow variability through the strait, independent of geographical location. The mesoscale variability in the BS seems to originate from two different sources: a remote origin from variability in the Alaskan Stream that enters the BS through the Aleutian passages and a local origin from the interaction of currents with the Bowers Ridge in the Aleutian Basin. Comparisons between the flow in the Aleutian passages and flow in other straits, such as the Yucatan Channel and the Faroe Bank Channel, suggest some universal topographically induced dynamics in strait flows.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. Aagaard K, Roach AT, Schumacher JD (1985) On the wind-driven variability of the flow through Bering Strait. J Geophys Res 90(C10):7213–7222

    Article  Google Scholar 

  2. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  3. Cenedese C, Whitehead JA, Ascarelli TA, Ohiwa M (2004) A dense current flowing down a sloping bottom in a rotating fluid. J Phys Oceanogr 34:188–203

    Article  Google Scholar 

  4. Coachman LK, Aagaard K (1988) Transports through Bering Strait: annual and interannual variability. J Geophys Res 93(C12):15,535–15,539

    Article  Google Scholar 

  5. Crawford WR, Cherniawsky JY, Foreman MGG (2000) Multi-year meanders and eddies in the Alaskan Stream as observed by TOPEX/Poseidon altimeter. Geophys Res Lett 27(7):1025–1028

    Article  Google Scholar 

  6. De Boer AM, Nof D (2004) The Bering Strait’s grip on the northern hemisphere climate. Deep-Sea Res 51:1347–1366

    Article  Google Scholar 

  7. Ducet N, Le Traon PY, Reverdin G (2000) Global high-resolution mapping of ocean circulation from TOPEX/Poseidonand ERS1 and 2. J Geophys Res 105(C8):19477–19498. doi:10.1029/2000JC900063

    Article  Google Scholar 

  8. Ezer T (2006) Topographic influence on overflow dynamics: Idealized numerical simulations and the Faroe Bank Channel overflow. J Geophys Res 111(C02002). doi:10.1029/2005JC003195

  9. Ezer T, Oey L-Y (2010) The role of the Alaskan Stream in modulating the Bering Sea climate. J Geophys Res C04025. doi:10.1029/2009JC005830

  10. Ezer T, Oey L-Y, Lee H-C, Sturges W (2003) The variability of currents in the Yucatan Channel: analysis of results from a numerical ocean model. J Geophys Res 108(C1):3012. doi:10.1029/2002JC001509

    Article  Google Scholar 

  11. Favorite F (1967) The Alaskan Stream. Int N Pac Fish Comm Bull 21:20

    Google Scholar 

  12. Favorite F (1974) Flow into the Bering Sea through Aleutian Island passages. In: Hood DW, Kelley EJ (eds) Oceanography of the Bering Sea with emphasis on renewable resources. Publication No. 2. Institute of Marine Science, University of Alaska, Fairbanks, pp. 3–37

  13. Foreman MGG, Cummins PF, Cherniawsky JY, Stabeno P (2006) Tidal energy in the Bering Sea. J Mar Res 64:797–818. doi:10.1357/0022240006779698341

    Article  Google Scholar 

  14. Hu H, Wang J (2010) Modeling effects of tidal and wave mixing on circulation and thermohaline structures in the Bering Sea: process studies. J Geophys Res 115(C01006). doi:10.1029/2008JC005175

  15. Hunt GL Jr, Stabeno P, Walters G, Sinclair E, Brodeur RD, Napp JM, Bond NA (2002) Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep-Sea Res 49:5821–5853

    Article  Google Scholar 

  16. Jin M, Deal C, Wang J, McRoy CP (2009) Response of lower trophic level production to long-term climate change in the southeastern Bering Sea. J Geophys Res 114(C04010). doi:10.1029/2008JC005105

  17. Johnson GC, Stabeno PJ, Riser SC (2004) The Bering slope current system revisited. J Phys Oceanogr 34:384–398

    Article  Google Scholar 

  18. Ladd C, Stabeno PJ (2009) Freshwater transport from the Pacific to the Bering Sea through Amukta Pass. Geophys Res Lett 36(L14608). doi:10.1029/2009GL039095

  19. Legg S, Chang Y, Chassignet EP, Danabasoglu G, Ezer T, Gordon AL, Griffies S, Hallberg R, Jackson L, Large W, Ozgokmen T, Peters H, Price J, Riemenschneider U, Wu W, Xu X, Yang J (2009) Improving oceanic overflow representation in climate models: the Gravity Current Entrainment Climate Process Team. Bull Amer Met Soc 90(5):657–670

    Article  Google Scholar 

  20. Liu SK, Leendertse JJ (1982) Three-dimensional model of Bering and Chukchi Sea. Coastal Eng 18:598–616

    Google Scholar 

  21. Maslowski W, Roman R, Kinney JC (2008) Effects of mesoscale eddies on the flow of the Alaskan Stream. J Geophys Res 113(C07036). doi:10.1029/2007JC004341

  22. Mellor GL (2004) Users’ guide for a three-dimensional, primitive equation, numerical ocean model. Prog Atmos Oceanic Sci, Princeton University, Princeton, p 42

  23. Mellor GL, Yamada T (1982) Development of a turbulent closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Google Scholar 

  24. Ochoa J, Sheinbaum J, Baden A, Candela J, Wilson D (2001) Geostrophy via potential vorticity inversion in the Yucatan Channel. J Mar Res 59:725–747

    Article  Google Scholar 

  25. Oey LY, Ezer T, Sturges W (2004) Modeled and observed Empirical Orthogonal Functions of currents in the Yucatan Channel. J Geophys Res 109(C08011). doi:10.1029/2004JC002345

  26. Overland JE, Spillane MC, Hurlburt HE, Wallcraft AJ (1994) A numerical study of the circulation of the Bering Sea basin and exchange with the North Pacific Ocean. J Phys Oceanogr 24:736–758

    Article  Google Scholar 

  27. Panteleev G, Stabeno P, Luchin VA, Nechaev DA, Ikeda M (2006) Summer transport estimates of the Kamchatka Current derived as a variational inverse of hydrophysical and surface drifter data. Geophys Res Lett 33(L09609). doi:10.1029/2005GL024974

  28. Pickart RS, Moore GWK, Macdonald AM, Renfrew IA, Walsh JE, Kessler WS (2009) Seasonal evolution of Aleutian low pressure systems: implications for the North Pacific subpolar circulation. J Phys Oceanogr 39:1317–1339

    Article  Google Scholar 

  29. Reed RK (1968) Transport of the Alaskan Stream. Nature 220(16):681–682

    Article  Google Scholar 

  30. Reed RK (1984) Flow of the Alaskan Stream and its variations. Deep-Sea Res 31(4):369–386

    Article  Google Scholar 

  31. Reed RK (1990) A year-long observation of water exchange between the North Pacific and the Bering Sea. Limnol Oceanogr 35(7):1604–1609

    Article  Google Scholar 

  32. Reed RK, Stabeno PJ (1993) The recent return of the Alaskan Stream to Near Strait. J Mar Res 51:515–527

    Article  Google Scholar 

  33. Reed RK, Stabeno PJ (1999) A recent full-depth survey of the Alaskan Stream. J Oceanogr 55:79–85

    Article  Google Scholar 

  34. Roach AT, Aagaard K, Pease CH, Salo SA, Weingartner T, Pavlov V, Kulakov M (1995) Direct measurements of transport and water properties through the Bering Strait. J Geophys Res 100(C9):18,443–18,457

    Article  Google Scholar 

  35. Royer TC (1975) Seasonal variations of waters in the northern Gulf of Alaska. Deep-Sea Res 22:403–416

    Google Scholar 

  36. Royer TC, Emery WI (1984) Circulation in the Bering Sea, 1982–1983, based on satellite-tracked drifter observations. J Phys Oceanogr 14:1914–1920

    Article  Google Scholar 

  37. Sheinbaum J, Candela J, Badan A, Ochoa J (2002) Flow structure and transports in the Yucatan Channel. Geophys Res Lett 29(3). doi:10.1029/2001GL0139990

  38. Stabeno PJ, Reed R (1992) A major circulation anomaly in the western Bering Sea. Geophys Res Lett 19(16):1671–1674

    Article  Google Scholar 

  39. Stabeno PJ, Kachel DG, Kachel NB, Sullivan ME (2005) Observations from moorings in the Aleutian Passes: temperature, salinity and transport. Fisheries Oceanogr 14(1):39–54

    Article  Google Scholar 

  40. Stabeno PJ, Ladd C, Reed RK (2009) Observations of the Aleutian North Slope Current, Bering Sea, 1996–2001. J Geophys Res 114(C05015). doi:10.1029/2007JC004705

  41. Stabeno PJ, Schumacher JD, Ohtani K (1999) The physical oceanography of the Bering Sea. In: Loughlin TR, Ohtani K (eds) Dynamics of the Bering Sea. University of Alaska Sea Grant AK-SG-99-03, Fairbanks, pp. 1–28

  42. Thomson RE (1972) On the Alaskan stream. J Phys Oceanogr 2(4):363–371

    Article  Google Scholar 

  43. Wang J, Hu H, Mizobata K, Saitoh S (2009) Seasonal variations of sea ice and ocean circulation in the Bering Sea: a model-data fusion study. J Geophys Res 114(C02011). doi:10.1029/2008JC004727

  44. Woodgate RA, Aagaard K, Weingartner TJ (2005) Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys Res Lett 32(L04601). doi:10.1029/2004GL021880

  45. Woodgate RA, Aagaard K, Weingartner TJ (2006) Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004. Geophys Res Lett 33(L15609). doi:10.1029/2006GL026931

Download references


The research is supported by NOAA’s Office of Climate Programs, through grants to ODU (award NA08OAR4310613) and PU (award NA17RJ2612), as part of the project “Collaborative Research: Modeling Sea Ice-Ocean-Ecosystem Responses to Climate Changes in the Bering-Chukchi-Beaufort Seas with Data Assimilation of RUSALCA Measurements.” TE was partly supported by grants from NSF and NOAA. LYO is grateful to GFDL/NOAA, Princeton, where model computations were conducted.

Author information



Corresponding author

Correspondence to Tal Ezer.

Additional information

This article is part of the Topical Collection on the 4th International Workshop on Modelling the Ocean in Yokohama, Japan 21-24 May 2012

Responsible Editor: Yasumasa Miyazawa

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ezer, T., Oey, L. On the dynamics of strait flows: an ocean model study of the Aleutian passages and the Bering Strait. Ocean Dynamics 63, 243–263 (2013). https://doi.org/10.1007/s10236-012-0589-6

Download citation


  • Bering Sea
  • Aleutian passages
  • Numerical ocean modeling
  • Flow–topography interaction
  • Strait dynamics