Ocean Dynamics

, Volume 62, Issue 10–12, pp 1457–1470 | Cite as

Resolving frontal structures: on the payoff using a less diffusive but computationally more expensive advection scheme

  • Knut Barthel
  • Ute Daewel
  • Dhanya Pushpadas
  • Corinna Schrum
  • Marius Årthun
  • Henning Wehde
Article

Abstract

This article presents some advantages using a shape-preserving total variation diminishing (TVD) advection scheme in an ecosystem model. The superbee flux-limiter has been used to the second-order Lax–Wendroff advection scheme to make it TVD. We performed simulations for three shelf sea regions with different characteristic time scales, namely, the North Sea, the Barents Sea, and the Baltic Sea. To explore the advantages, we also performed reference runs with the much simpler and computationally cheaper upwind advection scheme. Frontal structures are much better resolved with the TVD scheme. The bottom salinity in the Baltic Sea stays at realistic values throughout the 10-year simulation with the TVD scheme, while with the upwind scheme, it drifts towards lower values and the permanent haline stratification in the Baltic is almost completely eroded within one seasonal cycle. Only when applying TVD for both the vertical and horizontal advections the model succeeded to preserve haline stratification in the decadal simulation. Lower trophic level patterns are far better reproduced with the TVD scheme, and for the estimated cod larval survival, the advantages seem to be even stronger. Simulations using the TVD-derived prey fields identified distinct regions such as Dogger Bank to favor potential larvae survival (PLS), which did not appear as particularly favorable in the upstream simulations. The TVD scheme needs about 25 % more time on the central processing unit (CPU) in case of a pure hydrodynamic setup with only two scalar state variables (Barents Sea application). The additional CPU time cost increases for a coupled physical–biological model application with a large number of state variables. However, this is more than compensated by all the advantages found, and, hence, we conclude that it is worthwhile to use the TVD scheme in our ecosystem model.

Keywords

TVD Advection schemes Ecosystem model Fronts Shelf sea 

References

  1. Albretsen J, Røed L (2010) Decadal long simulations of mesoscale structures in the northern North Sea/Skagerrak using two ocean models. Ocean Dyn 60(4):933–955CrossRefGoogle Scholar
  2. Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17:173–265Google Scholar
  3. Arheimer B, Dahné J, Donnelly C, Lindström G, Strömqvist J (2012) Water and nutrient simulations using the HYPE model for Sweden vs. the Baltic Sea basin—influence of input-data quality and scale. Hydrol Res 43(4):315–329Google Scholar
  4. Årthun M, Schrum C (2010) Ocean surface heat flux variability in the Barents Sea. J Mar Syst 83(1–2):88–98CrossRefGoogle Scholar
  5. Årthun M, Ingvaldsen RB, Smedsrud LH, Schrum C (2011) Dense water formation and circulation in the Barents Sea. Deep-Sea Res I Oceanogr Res Pap 58(8):801–817CrossRefGoogle Scholar
  6. Aumont O, Maier-Reimer E, Blain S, Monfray P (2003) An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochem Cycles 17(2):1060CrossRefGoogle Scholar
  7. Backhaus JO, Hainbucher D (1987) A finite difference general circulation model for shelf seas and its application to low frequency variability on the North European Shelf. In: Nihoul JCJ, Jamart BM (eds) Elsevier oceanography series. Elsevier, Amsterdam, pp 221–244Google Scholar
  8. Bohle-Carbonell M (1992) Pitfalls in sampling, comments on reliability and suggestions for simulation. Cont Shelf Res 12(1):3–24CrossRefGoogle Scholar
  9. Boris JP, Book DL (1973) Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J Comput Phys 11(1):38–69CrossRefGoogle Scholar
  10. Brink KH (2005) Coastal physical process overview. In: Robinson AR, Brink KH (eds) The global coastal ocean. Multiscale interdisciplinary processes. The Sea 13:37–59Google Scholar
  11. Coastal physical process overview. In: A.R. Robinson and K.H. Brink (Editors), The global coastal ocean. Multiscale interdisciplinary processes. The Sea 13 pp 37–59Google Scholar
  12. Daewel U et al (2008a) Coupling ecosystem and individual-based models to simulate the influence of environmental variability on potential growth and survival of larval sprat (Sprattus sprattus L.) in the North Sea. Fish Oceanogr 17(5):333–351CrossRefGoogle Scholar
  13. Daewel U, Peck MA, Schrum C, St John MA (2008b) How best to include the effects of climate-driven forcing on prey fields in larval fish individual-based models. J Plankton Res 30(1):1–5CrossRefGoogle Scholar
  14. Daewel U, Peck MA, Schrum C (2011) Life history strategy and impacts of environmental variability on early life stages of two marine fishes in the North Sea: an individual-based modelling approach. Can J Fish Aquat Sci 68(3):426–443CrossRefGoogle Scholar
  15. Damm P (1997) Die saisonale Salzgehalts- und Frischwasserverteilung in der Nordsee und ihre Bilanzierung. Berichte aus dem Zentrum für Meereskunde und Klimaforschung der Universität Hamburg, Germany. Reihe B: Ozeanographie 28: 259 ppGoogle Scholar
  16. Engquist BE, Osher S, Somerville RCJ (1985) Large-scale computations in fluid mechanics. Lect Appl Math 22(2):409Google Scholar
  17. Fer I, Drinkwater K (2012) Mixing in the Barents Sea Polar Front near Hopen in spring. J Mar Syst. doi:10.1016/j.jmarsys.2012.01.005
  18. Fox CJ et al (2008) Mapping the spawning grounds of North Sea cod (Gadus morhua) by direct and indirect means. Proceedings of the Royal Society B: Biological Sciences 275(1642):1543–1548Google Scholar
  19. Golubev VA, Zuyev AN (1999) Barents and Kara Seas oceanographic database (BarKode). Tech. Rep. ACSYS IACPO. World Research Program, Arctic Climate System Study, Tromsø, Report 5Google Scholar
  20. Griffies SM et al (2000) Developments in ocean climate modelling. Ocean Model 2(3–4):123–192CrossRefGoogle Scholar
  21. Gustafsson B (1997) Interaction between Baltic Sea and North Sea. Ocean Dyn 49(2):165–183Google Scholar
  22. Harten A (1983) High-resolution schemes for hyperbolic conservation-laws. J Comput Phys 49(3):357–393CrossRefGoogle Scholar
  23. Hood RR, Coles VJ, Capone DG (2004) Modeling the distribution of Trichodesmium and nitrogen fixation in the Atlantic Ocean. J Geophys Res 109(C6):C06006CrossRefGoogle Scholar
  24. Ingvaldsen R, Loeng H, Ådlandsvik B (2003) Climate variability in the Barents Sea during the 20th century with focus on the 1990s. ICES Mar Sci Symp 219:160–168Google Scholar
  25. Ivanov VV, Shapiro GI (2005) Formation of a dense water cascade in the marginal ice zone in the Barents Sea. Deep-Sea Res I Oceanogr Res Pap 52(9):1699–1717CrossRefGoogle Scholar
  26. James ID (1996) Advection schemes for shelf sea models. J Mar Syst 8(3–4):237–254CrossRefGoogle Scholar
  27. Janssen F, Schrum C, Backhaus J (1999) A climatological data set of temperature and salinity for the Baltic Sea and the North Sea. Ocean Dyn 51:5–245Google Scholar
  28. Joint I, Pomroy A (1993) Phytoplankton biomass and production in the southern North Sea. Mar Ecol Prog Ser 99:169–182CrossRefGoogle Scholar
  29. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  30. Kowalik Z, Murty TS (1993) Numerical modelling of ocean dynamics. World Scientific, Singapore, p 496CrossRefGoogle Scholar
  31. Kriest I, Oschlies A (2011) Numerical effects on organic-matter sedimentation and remineralization in biogeochemical ocean models. Ocean Model 39(3–4):275–283CrossRefGoogle Scholar
  32. Lax P, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13(2):217–237CrossRefGoogle Scholar
  33. Luyten PJ et al (1999) COHERENS — A coupled hydrodynamical-ecological model for regional and shelf seas: user documentation. MUMM report, Management Unit of the Mathematical Models of the North Sea, Belgium, p 911Google Scholar
  34. Meyer EMI, Pohlmann T, Weisse R (2011) Thermodynamic variability and change in the North Sea (1948–2007) derived from a multidecadal hindcast. J Mar Syst 86(3–4):35–44CrossRefGoogle Scholar
  35. Müller-Navarra S (2003) Zu den selbständigen Gezeiten der Ostsee. In: Fennel W, Hentzsch B (eds) Festschrift zum 65. Geburtstag von Wolfgang Matthäus, Meereswissenschaftliche Berichte Nr. 54, Institut für Ostseeforschung Warnemünde, Germany, pp 33–37Google Scholar
  36. Omstedt A, Hansson D (2006) The Baltic Sea ocean climate system memory and response to changes in the water and heat balance components. Cont Shelf Res 26(2):236–251CrossRefGoogle Scholar
  37. Omstedt A, Elken J, Lehmann A, Piechura J (2004) Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes. Prog Oceanogr 63(1–2):1–28CrossRefGoogle Scholar
  38. Orlanski I (1976) A simple boundary condition for unbounded hyperbolic flows. J Comput Phys 21(3):251–269CrossRefGoogle Scholar
  39. Peters SWM et al. (2005) Atlas of chlorophyll-a concentration for the North Sea based on MERIS imagery of 2003. VU- IVM, Amsterdam, Netherlands, p 117Google Scholar
  40. Petersen W, Schroeder F, Bockelmann F-D (2011) FerryBox—application of continuous water quality observations along transects in the North Sea. Ocean Dyn 61(10):1541–1554CrossRefGoogle Scholar
  41. Pietrzak J (1998) The use of TVD limiters for forward-in-time upstream-biased advection schemes in ocean modeling. Mon Weather Rev 126(3):812–830CrossRefGoogle Scholar
  42. Pohlmann T (1996) Calculating the annual cycle of the vertical eddy viscosity in the North Sea with a three-dimensional baroclinic shelf sea circulation model. Cont Shelf Res 16(2):147–161CrossRefGoogle Scholar
  43. Pohlmann T (2006) A meso-scale model of the central and southern North Sea: consequences of an improved resolution. Cont Shelf Res 26(19):2367–2385CrossRefGoogle Scholar
  44. Radach G, Pätsch J (2007) Variability of continental riverine freshwater and nutrient inputs into the North Sea for the years 1977–2000 and its consequences for the assessment of eutrophication. Estuar Coasts 30(1):66–81Google Scholar
  45. Reigstad M, Wassmann P, Wexels Riser C, Øygarden S, Rey F (2002) Variations in hydrography, nutrients and chlorophyll a in the marginal ice-zone and the central Barents Sea. J Mar Syst 38(1–2):9–29CrossRefGoogle Scholar
  46. Rodhe J, Tett P, Wulff F (2004) The Baltic and North Seas: a regional review of some important physical–chemical–biological interaction processes (20,S), Chapter 26. In: Robinson AR , Brink KH (eds), The Sea 14:(1029–1071)Google Scholar
  47. Samuelsson M (1996) Interannual salinity variations in the Baltic Sea during the period 1954–1990. Cont Shelf Res 16(11):1463–1477CrossRefGoogle Scholar
  48. Sandø AB, Nilsen JEO, Gao Y, Lohmann K (2010) Importance of heat transport and local air-sea heat fluxes for Barents Sea climate variability. J Geophys Res Oceans 115(C07013):11Google Scholar
  49. Schrum C (1997) Thermohaline stratification and instabilities at tidal mixing fronts: results of an eddy resolving model for the German Bight. Cont Shelf Res 17(6):689–716CrossRefGoogle Scholar
  50. Schrum C, Backhaus JO (1999) Sensitivity of atmosphere–ocean heat exchange and heat content in the North Sea and the Baltic Sea. Tellus A 51(4):526–549CrossRefGoogle Scholar
  51. Schrum C, Siegismund F, StJohn M (2003) Decadal variations in the stratification and circulation patterns of the North Sea. Are the 90's unusual? ICES symposium of hydrobiological variability in the ICES area 1990–1999. ICES J Mar Sci Symp Ser 219:121–131Google Scholar
  52. Schrum C, Harms IH, Hatten K (2005) Modelling air–sea exchange in the Barents Sea by using a coupled regional ice-ocean model. Evaluation of modelling strategies. Meteorol Z 14(6):801–808CrossRefGoogle Scholar
  53. Schrum C, Alekseeva I, St. John M (2006) Development of a coupled physical–biological ecosystem model ECOSMO: part I: model description and validation for the North Sea. J Mar Syst 61(1–2):79–99CrossRefGoogle Scholar
  54. Skagseth Ø (2008) Recirculation of Atlantic water in the western Barents Sea. Geophys Res Lett 35(L11606):5Google Scholar
  55. Smolarkiewicz PK (1983) A simple positive definite advection scheme with small implicit diffusion. Mon Weather Rev 111(3):479–486CrossRefGoogle Scholar
  56. Smolarkiewicz PK, Margolin LG (1998) MPDATA: a finite-difference solver for geophysical flows. J Comput Phys 140(2):459–480CrossRefGoogle Scholar
  57. Sokolov A (2002) The client program—Nest—of the decision support system of MARE: user interface. Baltic Nest Institute, University of Stockholm, p 37Google Scholar
  58. Stigebrandt A (1983) A model for the exchange of water and salt between the Baltic and the Skagerrak. J Phys Oceanogr 13(3):411–427CrossRefGoogle Scholar
  59. Sweby PK (1984) High-resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21(5):995–1011CrossRefGoogle Scholar
  60. Tremback CJ, Powell J, Cotton WR, Pielke RA (1987) The forward-in-time upstream advection scheme: extension to higher orders. Mon Weather Rev 115(2):540–555CrossRefGoogle Scholar
  61. Vested HJ, Baretta JW, Ekebjærg LC, Labrosse A (1996) Coupling of hydrodynamical transport and ecological models for 2D horizontal flow. J Mar Syst 8(3–4):255–267CrossRefGoogle Scholar
  62. Wehde H et al. (2006) FerryBox observations in the Southern North Sea—application of numerical models for improving the significance of the FerryBox data. In: Dahlin H, Flemming NC, Petersson S (eds) European operational oceanography: present and future. Proceedings of the 4th EuroGOOS Conference, Brest, France, 6–9 June 2005, pp 169–173Google Scholar
  63. Wulff F, Rahm L (1990) A database and its tools. In: Wulff F. (ed), Large-scale environmental effects and ecological processes in the Baltic Sea. Research programme for the period 1990-1995 and background documents. SNV Report 3849:217–225Google Scholar
  64. Wulff F, Bonsdorff E, Gren I-M, Johansson S, Stigebrandt A (2001) Giving advice on cost effective measures for a cleaner Baltic Sea: a challenge for science. AMBIO: A Journal of the Human Environment, 30(4):254–259Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Knut Barthel
    • 1
  • Ute Daewel
    • 1
  • Dhanya Pushpadas
    • 1
  • Corinna Schrum
    • 1
  • Marius Årthun
    • 1
    • 3
  • Henning Wehde
    • 2
  1. 1.Geophysical InstituteUniversity of BergenBergenNorway
  2. 2.Institute of Marine ResearchBergenNorway
  3. 3.British Antarctic SurveyCambridgeUK

Personalised recommendations