Ocean Dynamics

, Volume 62, Issue 9, pp 1287–1310 | Cite as

Eastern boundary drainage of the North Atlantic subtropical gyre

  • Irene Laiz
  • Jose Luis Pelegrí
  • Francisco Machín
  • Pablo Sangrà
  • Alonso Hernández-Guerra
  • Angeles Marrero-Díaz
  • Angel Rodríguez-Santana
Article

Abstract

The eastern boundary of the North Atlantic subtropical gyre (NASG) is an upwelling favorable region characterized by a mean southward flow. The Canary Upwelling Current (CUC) feeds from the interior ocean and flows south along the continental slope off NW Africa, effectively providing the eastern boundary condition for the NASG. We follow a joint approach using slope and deep-ocean data together with process-oriented modeling to investigate the characteristics and seasonal variability of the interior–coastal ocean connection, focusing on how much NASG interior water drains along the continental slope. First, the compiled sets of data show that interior central waters flow permanently between Madeira and the Iberian Peninsula at a rate of 2.5 ± 0.6 Sv (1 Sv = 106 m3 s-1 109 km s-1), with most of it reaching the slope and shelf regions north of the Canary Islands (1.5 ± 0.7 Sv). Most of the water entering the African slope and shelf regions escapes south between the easternmost Canary Islands and the African coast: In 18 out of 22 monthly realizations, the flow was southward (−0.9 ± 0.4 Sv) although an intense flow reversal occurred usually around November (1.7 ± 0.9 Sv), probably as the result of a late fall intensification of the CUC north of the Canary Islands followed by instability and offshore flow diversion. Secondly, we explore how the eastern boundary drainage may be specified in a process-oriented one-layer quasigeostrophic numerical model. Non-zero normal flow and constant potential vorticity are alternative eastern boundary conditions, consistent with the idea of anticyclonic vorticity induced at the boundary by coastal jets. These boundary conditions cause interior water to exit the domain at the boundary, as if recirculating through the coastal ocean, and induce substantial modifications to the shape of the eastern NASG. The best model estimate for the annual mean eastward flow north of Madeira is 3.9 Sv and at the boundary is 3.3 Sv. The water exiting at the boundary splits with 1 Sv flowing into the Strait of Gibraltar and the remaining 2.3 Sv continuing south along the coastal ocean until the latitude of Cape Ghir. The model also displays significant wind-induced seasonal variability, with a maximum connection between the interior and coastal oceans taking place in autumn and winter, in qualitative agreement with the observations.

Keywords

Canary upwelling system Eastern boundary Potential vorticity Quasigeostrophic model 

Abbreviations

NASG

North Atlantic subtropical gyre

CUC

Canary Upwelling Current

NACW

North Atlantic Central Waters

CC

Canary Current

CANIGO

Canary Islands Azores Gibraltar Observations

XBT

Expendable bathythermograph

CTD

Conductivity–temperature–depth

AAIW

Antartic Intermediate Water

ROMS

Regional Ocean Modeling System

Notes

Acknowledgments

This work has been supported by the European Union through the CANIGO project (MAS3-CT96-0060) and by the Ministerio de Ciencia e Innovación of the Spanish Government through projects CANOA (CTM2005-00444) and MOC2-Ecuatorial (CTM2008-06438-C02-01/MAR). Dr. Laiz was partially supported by the Spanish Ministerio de Ciencia e Innovación through the “Juan de la Cierva Programme” and through project “CLI-CGL2008-04736.” The authors are also grateful to two anonymous referees for their constructive comments, as well as to editor Dirk Olbers for his encouragement to provide a revised manuscript.

References

  1. Arhan M, Colin de Verdière A, Mémery L (1994) The eastern boundary of the subtropical North Atlantic. J Phys Oceanogr 24(6):1295–1316CrossRefGoogle Scholar
  2. Barton ED (1989) The poleward undercurrent on the eastern boundary of the subtropical North Atlantic. In: Neshyba SJ, Mooers CNK, Smith RL, Barber RT (eds) Poleward flows along eastern ocean boundaries. Springer, New York, pp 82–95CrossRefGoogle Scholar
  3. Barton ED (1998) Eastern boundary of the North Atlantic: northwest Africa and Iberia. Coastal segment (18,E). In: Robinson AR, Brink KH (eds) The sea, vol. 11. Wiley, New York, pp 633–657Google Scholar
  4. Barton ED, Hughes P (1982) Variability of water mass interleaving off NW Africa. J Mar Res 40(4):963–984Google Scholar
  5. Barton ED, Arístegui J, Tett P, Cantón M, García-Braun J, Hernández-León S, Nykjaer L, Almeida C, Almunia J, Ballesteros S, Basterretxea G, Escánez J, García-Weil L, Hernández-Guerra A, López-Laatzen F, Molina R, Montero MF, Navarro-Pérez E, Rodríguez JM, van Lenning K, Vélez H, Wild K (1998) The transition zone of the Canary Current upwelling region. Prog Oceanogr 41(4):455–504CrossRefGoogle Scholar
  6. Candela J (2001) Mediterranean water and the global circulation. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Observing and modelling the global ocean. Academic, New York, 419–429ppGoogle Scholar
  7. Cessi P (1992) Ventilation of eastern subtropical gyres. J Phys Oceanogr 22(6):683–685CrossRefGoogle Scholar
  8. Csanady GT, Pelegrí JL (1995) Vorticity balance of boundary currents. J Mar Res 53(2):171–187CrossRefGoogle Scholar
  9. da Silva A, Young AC, Levitus S (1994) Atlas of surface marine data 1994, vol. 1: algorithms and procedures. NOAA Atlas NESDIS 6. NOAA, Silver SpringGoogle Scholar
  10. Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error estimates. J Phys Oceanogr 13:1093–1104CrossRefGoogle Scholar
  11. Hernández-Guerra A, López-Laatzen F, Machín F, de Armas D, Pelegrí JL (2001) Water masses, circulation and transport in the eastern boundary current of the North Atlantic subtropical gyre. Sci Mar 65:177–186CrossRefGoogle Scholar
  12. Hernández-Guerra A, Machín F, Antoranz A, Cisneros-Aguirre J, Gordo C, Marrero-Díaz A, Martínez A, Ratsimandresy AW, Rodríguez-Santana A, Sangrà P, López-Laatzen F, Parrilla G, Pelegrí JL (2002) Temporal variability of mass transport in the Canary Current. Deep Sea Res Part II 49(17):3415–3426CrossRefGoogle Scholar
  13. Hernández-Guerra A, Fraile-Nuez E, Borges R, López-Laatzen F, Vélez-Belchí P, Parrilla G, Müller TJ (2003) Transport variability in the Lanzarote passage (eastern boundary current of the North Atlantic subtropical gyre). Deep Sea Res Part I 50:189–200CrossRefGoogle Scholar
  14. Huang RX (1989) The generalized eastern boundary conditions and the three-dimensional structure of the ideal fluid thermocline. J Geophys Res 94(C4):4855–4865CrossRefGoogle Scholar
  15. Hughes P, Barton ED (1974) Stratification and water mass structure in upwelling area off Northwest Africa in April–May 1969. Deep-Sea Res 21(8):611–628Google Scholar
  16. Jackett D, McDougall T (1997) A neutral density variable for the world’s oceans. J Phys Oceanogr 27(2):237–263CrossRefGoogle Scholar
  17. Janowitz GS (1986) A surface density and wind-driven model of the thermocline. J Geophys Res 91(C4):5111–5118CrossRefGoogle Scholar
  18. Josey SA, Kent EC, Taylor PK (2002) Wind stress forcing of the ocean in the SOC climatology: comparisons with the NCEP/NCAR, ECMWF, UWM/COADS and Hellerman and Rosenstein datasets. J Phys Oceanogr 32:1993–2019CrossRefGoogle Scholar
  19. Kawase M, Sarmiento JL (1985) Nutrients in the Atlantic thermocline. J Geophys Res 90(NC5):8961–8979CrossRefGoogle Scholar
  20. Knoll M, Hernández-Guerra A, Lenz B, López-Laatzen F, Machín F, Müller TJ, Siedler G (2002) The eastern boundary current system between the Canary Islands and the African coast. Deep Sea Res Part II 49(17):3427–3440CrossRefGoogle Scholar
  21. Laiz I, Sangrà P, Pelegrí JL, Marrero-Díaz A (2001) Sensitivity of an idealized subtropical gyre to the eastern boundary conditions. Sci Mar 65:187–194CrossRefGoogle Scholar
  22. Lozier MS, Owens WB, Curry RG (1995) The climatology of the North Atlantic. Prog Oceanogr 36(1):1–44CrossRefGoogle Scholar
  23. Luyten J, Pedlosky J, Stommel H (1983) The ventilated thermocline. J Phys Oceanogr 13(2):292–309CrossRefGoogle Scholar
  24. Machín F, Pelegrí JL (2009a) Integral descriptors of the vertical structure of the ocean. J Oceanogr 65:499–510CrossRefGoogle Scholar
  25. Machín F, Pelegrí JL (2009b) Northward penetration of Antarctic Intermediate Water off Northwest Africa. J Phys Oceanogr 39(3):512–535CrossRefGoogle Scholar
  26. Machín F, Pelegrí JL (2006) Effect of the Canary Islands in the blockage and mixing of the North Atlantic eastern water masses. Geophys. Res. Lett. 33(L04605):5Google Scholar
  27. Machín F, Hernández-Guerra A, Pelegrí JL (2006a) Mass fluxes in the Canary basin. Prog Oceanogr 70:416–447CrossRefGoogle Scholar
  28. Machín F, Pelegrí JL, Marrero-Díaz A, Laiz I, Ratsimandresy AW (2006b) Near-surface circulation in the southern Gulf of Cadiz. Deep Sea Res Part II 53(11–13):1161–1181CrossRefGoogle Scholar
  29. Machín F, Herraiz L, Pelegrí JL, Marrero-Díaz A, Font J, Rodríguez-Santana A (2010) Inverse modeling of salinity–temperature–depth relationships: application to the eastern North Atlantic subtropical gyre. J Mar Syst 80(3–4):144–159CrossRefGoogle Scholar
  30. Marrero-Díaz A, Pelegrí JL, Rodríguez-Santana A, Sangrà P (2001) Applicability of T–S algorithms to the Canary Islands region. Sci. Mar. 65(S1):195–204Google Scholar
  31. Mason E, Colas F, Molemaker J, Shchepetkin AF, Troupin C, McWilliams JC, Sangrà P (2011) Seasonal variability of the Canary Current: a numerical study. J Geophys Res 116:C06001. doi: 10.1029/2010jc006665 CrossRefGoogle Scholar
  32. Mittelstaedt E (1983) The upwelling area off Northwest Africa: a description of phenomena related to coastal upwelling. Prog Oceanogr 12(3):307–331CrossRefGoogle Scholar
  33. Mittelstaedt E (1991) The ocean boundary along the Northwest African coast: circulation and oceanographic properties at the sea surface. Prog Oceanogr 26(4):307–355CrossRefGoogle Scholar
  34. Müller TJ, Siedler G (1992) Multi-year current time-series in the eastern North Atlantic Ocean. J Mar Res 50:63–98Google Scholar
  35. O’Brien J (1986) Advanced physical oceanographic numerical modelling. NATO ASI series, vol. 186. NATO, Holland, 608 ppGoogle Scholar
  36. Ozgokmen TM, Chassignet EP, Rooth CGH (2001) On the connection between the Mediterranean outflow and the Azores Current. J Phys Oceanogr 31:461–480CrossRefGoogle Scholar
  37. Paillet J, Mercier H (1997) An inverse model of the eastern North Atlantic general circulation and thermocline ventilation. Deep Sea Res Part I 44(8):1293–1328CrossRefGoogle Scholar
  38. Pastor MV, Peña-Izquierdo J, Pelegrí JL, Marrero-Díaz A (2012) Meridional changes in water properties off NW Africa during November 2007/2008. Cien Mar 38(1B):223–244Google Scholar
  39. Pedlosky J (1979) Geophysical fluid dynamics. Springer, New York, 624ppCrossRefGoogle Scholar
  40. Pedlosky J (1983) Eastern boundary ventilation and the structure of the thermocline. J Phys Oceanogr 13(11):2038–2044CrossRefGoogle Scholar
  41. Pelegrí JL, Sangrà P, Hernández-Guerra A (1997) Heat gain in the eastern North Atlantic subtropical gyre. In: Díaz JI (ed) The mathematics of models for climatology and environment, vol. I (48). NATO ASI series. NATO, Holland, pp 419–436Google Scholar
  42. Pelegrí JL, Arístegui J, Cana L, González-Dávila M, Hernández-Guerra A, Hernández-León S, Montero M, Sangrà P, Santana-Casiano M (2005a) Coupling between the open ocean and the coastal upwelling region off northwest Africa: water recirculation and offshore pumping of organic matter. J Mar Sys 54(1–4):3–37CrossRefGoogle Scholar
  43. Pelegrí JL, Marrero-Díaz A, Ratsimandresy AW, Antoranz A, Cisneros-Aguirre J, Gordo C, Grisolía D, Hernández-Guerra A, Laiz I, Martínez A, Parrilla G, Pérez-Rodríguez P, Rodríguez-Santana A, Sangrà P (2005b) Hydrographic cruises off northwest Africa: the Canary Current and the Cape Ghir region. J Mar Sys 54(1–4):39–63CrossRefGoogle Scholar
  44. Pelegrí JL, Marrero-Díaz A, Ratsimandresy AW (2006) Nutrient irrigation of the North Atlantic. Prog Oceanogr 70(2–4):366–406CrossRefGoogle Scholar
  45. Ratsimandresy A, Pelegrí JL, Marrero-Díaz A, Hernández-Guerra A, Antoranz A, Martínez A (2001) Seasonal variability of the upper warmwatersphere in the Canary basin. Sci Mar 65:251–258CrossRefGoogle Scholar
  46. Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38:2379–2413CrossRefGoogle Scholar
  47. Roache PJ (1982) Computational fluid dynamics. Hermosa, New Mexico, 446ppGoogle Scholar
  48. Sarmiento JL, Rooth CGH, Roether W (1982) The North Atlantic tritium distribution in 1972. J Geophys Res 87(NC10):8047–8056CrossRefGoogle Scholar
  49. Schmitz WJ, McCartney MS (1993) On the North Atlantic circulation. Rev Geophys 31(1):29–49. doi: 10.1029/92RG02583 CrossRefGoogle Scholar
  50. Siedler G, Onken R (1996) Eastern recirculation. Krauss W (ed) The Warmwatersphere of the North Atlantic ocean. Gebruder Brontraeger, Berlin, pp 329–364Google Scholar
  51. Smith W, Sandwell D (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334):1956–1962CrossRefGoogle Scholar
  52. Stramma L (1984) Geostrophic transport in the warm water sphere of the eastern subtropical North Atlantic. J Mar Res 42(3):537–558CrossRefGoogle Scholar
  53. Stramma L, Issemer HJ (1988) Seasonal variability of meridional temperature fluxes in the eastern North-Atlantic ocean. J Mar Res 46(2):281–299CrossRefGoogle Scholar
  54. Stramma L, Siedler G (1988) Seasonal changes in the North-Atlantic subtropical gyre. J Geophys Res 93(C7):8111–8118CrossRefGoogle Scholar
  55. Sumata H, Kubokawa A (2001) Numerical study of eastern boundary ventilation and its effects on the thermocline structure. J Phys Oceanogr 31(10):3002–3019CrossRefGoogle Scholar
  56. Trenberth KE, Large WG, Olson JG (1990) The mean annual cycle in global ocean wind stress. J Phys Oceanogr 20(11):1742–1760CrossRefGoogle Scholar
  57. Troupin C, Mason E, Beckers JM, Sangrà P (2012) Generation of the Cape Ghir upwelling filament: a numerical study. Ocean Model 41:1–15CrossRefGoogle Scholar
  58. Zenk W, Klein B, Schroder M (1991) Cape Verde frontal zone. Deep-Sea Res 38:S505–S530CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Irene Laiz
    • 1
  • Jose Luis Pelegrí
    • 2
  • Francisco Machín
    • 3
  • Pablo Sangrà
    • 4
  • Alonso Hernández-Guerra
    • 4
  • Angeles Marrero-Díaz
    • 3
  • Angel Rodríguez-Santana
    • 3
  1. 1.Departmento de Física AplicadaUniversidad de CádizPuerto RealSpain
  2. 2.Departament d’Oceanografia Física, Institut de Ciències del MarCSICBarcelonaSpain
  3. 3.Facultad de Ciencias del MarUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  4. 4.Instituto Universitario de Oceanografía y Cambio Global (IOCAG-ULPGC)Universidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations