Skip to main content

Advertisement

Log in

Identification of the environmentally safe fairway in the South-Western Baltic Sea and Kattegat

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Application of the preventive techniques for the optimisation of fairways in the south-western Baltic Sea and the Kattegat in terms of protection of the coastal regions against current-driven surface transport of adverse impacts released from vessels is considered. The techniques rely on the quantification of the offshore domains (the points of release of adverse impacts) in terms of their ability to serve as a source of remote, current-driven danger to the nearshore. An approximate solution to this inverse problem of current-driven transport is obtained using statistical analysis of a large pool of Lagrangian trajectories of water particles calculated based on velocity fields from the Denmark’s Meteorological Institute (DMI)/BSH cmod circulation model forced by the DMI-HIRHAM wind fields for 1990–1994. The optimum fairways are identified from the spatial distributions of the probability of hitting the coast and for the time (particle age) it takes for the pollution to reach the coast. In general, the northern side of the Darss Sill area and the western domains of the Kattegat are safer to travel. The largest variations in the patterns of safe areas and the properties of pollution beaching occur owing to the interplay of water inflow and outflow. The gain from the use of the optimum fairways is in the range of 10–30 % in terms of the decrease in the probability of coastal hit within 10 days after pollution release or an increase by about 1–2 days of the time it takes for the hit to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andrejev O, Myrberg K, Alenius P, Lundberg PA (2004a) Mean circulation and water exchange in the Gulf of Finland—a study based on three-dimensional modelling. Boreal Environ Res 9:1–16

    Google Scholar 

  • Andrejev O, Myrberg K, Lundberg PA (2004b) Age and renewal time of water masses in a semi-enclosed basin—application to the Gulf of Finland. Tellus 56A:548–558

    Google Scholar 

  • Andrejev O, Sokolov A, Soomere T, Värv R, Viikmäe B (2010) The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Estonian J Eng 16:187–210

    Article  Google Scholar 

  • Andrejev O, Soomere T, Sokolov A, Myrberg K (2011) The role of spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia 53:309–334

    Article  Google Scholar 

  • Ardhuin F, Marie L, Rascle N, Forget P, Roland A (2009) Observation and estimation of Lagrangian, Stokes and Eulerian currents induced by wind and waves at the sea surface. J Phys Oceanogr 39:2820–2838

    Article  Google Scholar 

  • Bi NS, Yang ZS, Wang HJ, Hu BQ, Ji YJ (2010) Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period. Estuar Coast Shelf Sci 86:352–362

    Article  Google Scholar 

  • Blanke B, Raynaud S (1997) Kinematics of the Pacific Equatorial undercurrent: an Eulerian and Lagrangian approach from GCM results. J Phys Oceanogr 27:1038–1053

    Article  Google Scholar 

  • Bolin B, Rodhe H (1973) A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 25:58–62

    Article  Google Scholar 

  • Bork I, Maier-Reimer E (1978) On the spreading of power plant cooling water in a tidal river applied to the river Elbe. Adv Water Resour 1(3):161–168

    Article  Google Scholar 

  • Broström G, Carrasco A, Hole LR, Dick S, Janssen F, Mattsson J, Berger S (2011) Usefulness of high resolution coastal models for operational oil spill forecast: the Full City accident. Ocean Sci 7:805–820

    Article  Google Scholar 

  • Buch E, She J (2005) Operational Ocean Forecasting at the Danish Meteorological Institute. Environ Res Eng Manag 3:5–11

    Google Scholar 

  • Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM Regional Climate Model. Version 5. DMI technical report No. 06–17, Available at http://www.dmi.dk/dmi/tr06-17.pdf

  • De Vries P, Döös K (2001) Calculating Lagrangian trajectories using time-dependent velocity fields. J Atmos Oceanic Technol 18:1092–1101

    Article  Google Scholar 

  • Delhez EJM, Campin J, Hirst AC, Deleersnijder E (1999) Toward a general theory of the age in ocean modelling. Ocean Model 1:17–27

    Article  Google Scholar 

  • Dick S, Kieline E, Müller-Navarra S (2001) The operational circulation model of BSH (BSHcmod). Model description and validation. Berichte des Bundesatesamtes für Seeschifffahrt und Hydrographie 29/2001. Hamburg, Germany, 48 pp

  • Dippner JW (1983) A hindcast of the Bravo Ekofish blow-out (North Sea). Veroeff Inst Meeresforsch Bremerhaven 19:245–257

    Google Scholar 

  • Döös K (1995) Inter-ocean exchange of water masses. J Geophys Res C100:13499–13514

    Article  Google Scholar 

  • Döös K, Engqvist A (2007) Assessment of water exchange between a discharge region and the open sea—a comparison of different methodological concepts. Estuar Coast Shelf Sci 74:709–721

    Article  Google Scholar 

  • Döös K, Nycander J, Coward AC (2008) Lagrangian decomposition of the Deacon Cell. J Geophys Res C 113:07028

    Article  Google Scholar 

  • Engqvist A, Döös K, Andrejev O (2006) Modeling water exchange and contaminant transport through a Baltic coastal region. Ambio 35:435–447

    Article  Google Scholar 

  • Fennel W, Seifert T, Kayser B (1991) Rossby radii and phase speeds in the Baltic Sea. Cont Shelf Res 11:23–36

    Article  Google Scholar 

  • Funkquist L (2001) HIROMIB: An operational eddy-resolving model for the Baltic Sea. Bull Maritime Inst Gdansk 28:7–16

    Google Scholar 

  • Gollasch S, Leppäkoski E (2007) Risk assessment and management scenarios for ballast water mediated species introduction into the Baltic Sea. Aquat Invasions 2:313–340

    Article  Google Scholar 

  • Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Jönsson B, Lundberg P, Döös K (2004) Baltic sub-basin turnover times examined using the Rossby Centre Ocean Model. Ambio 23:257–260

    Google Scholar 

  • Kachel MJ (2008) Particularly sensitive sea areas. Hamburg studies on maritime affairs, 13. Springer, Berlin, 376 pp

    Google Scholar 

  • Kleine E (1994) Das operationelle Modell des BSH für Nordsee und Ostsee. Bundesamt fur Seeschifffart und Hydrographie. Technical report, 126 pp

  • Kolmogorov AN (1941) The local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Comptes rendus (Doklady) de l’Academie des Sciences de l’URSS 31:301–305

    Google Scholar 

  • Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85

    Article  Google Scholar 

  • Lasern J, Høyer JL, She J (2007) Validation of a hybrid optimal interpolation and Kalman filter scheme of sea surface temperature assimilation. J Mar Sys 65:122–133

    Article  Google Scholar 

  • Lehmann A, Krauss W, Hinrichsen H-H (2002) Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus 54A:299–316

    Google Scholar 

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer, Berlin, 378 pp

    Book  Google Scholar 

  • Liu Y, Zhu J, She J, Zhuang S, Fu W, Gao J (2009) Assimilating temperature and salinity profile observations using an anisotropic recursive filter in a coastal ocean model. Ocean Model 30:75–87

    Article  Google Scholar 

  • Maier-Reimer E (1973) Hydrodynamical numerical investigation on horizontal dispersion and transport process in the North Sea. Mitteilungen des Institutes für Meereskunde der Universität Hamburg 21, 96 pp

  • Matthäus W, Lass HU (1995) The recent salt inflow into the Baltic Sea. J Phys Oceanogr 25:280–286

    Article  Google Scholar 

  • Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74:610–627

    Article  Google Scholar 

  • Nunes RA, Simpson JH (1985) Axial convergence in a well-mixed estuary. Estuar Coast Shelf Sci 20:637–649

    Article  Google Scholar 

  • Okubo A (1971) Oceanic diffusion diagrams. Deep-Sea Res 18:789–802

    Google Scholar 

  • Osborne AR, Kirwan AD Jr, Provenzale A, Bergamasco L (1986) A research for chaotic behaviour in large and mesoscale motions in the Pacific Ocean. Physica 23D:75–83

    Google Scholar 

  • Osborne AR, Kirwan AD, Provenzale A, Bergamasco L (1989) Fractal drifter trajectories in the Kuroshio extension. Tellus 41A:416–435

    Article  Google Scholar 

  • Osiński R, Rak D, Walczowski W, Piechura J (2010) Baroclinic Rossby radius of deformation in the southern Baltic Sea. Oceanologia 52:417–429

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part 1. Model description. Report no. 349, Max-Planck-Institut für Meteorologie

  • Sanderson BG, Goulding A, Okubo A (1990) The fractal dimension of relative Lagrangian motion. Tellus 42A:550–556

    Google Scholar 

  • She J, Berg P, Berg J (2007) Bathymetry effects on water exchange modelling the Danish Straits. J Mar Syst 65:450–459

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Wea Rev 91:99–164

    Article  Google Scholar 

  • Soomere T, Quak E (2007) On the potential of reducing coastal pollution by a proper choice of the fairway. J Coastal Res Special Issue 50:678–682

    Google Scholar 

  • Soomere T, Viikmäe B, Delpeche N, Myrberg K (2010) Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc Estonian Acad Sci 59:156–165

    Article  Google Scholar 

  • Soomere T, Andrejev O, Sokolov A, Myrberg K (2011a) The use of Lagrangian trajectories for identification the environmentally safe fairway. Mar Pollut Bull 62:1410–1420

    Article  Google Scholar 

  • Soomere T, Andrejev O, Sokolov A, Quak E (2011b) Management of coastal pollution by means of smart placement of human activities. J Coast Res Special Issue 64:951–955

    Google Scholar 

  • Soomere T, Berezovski M, Quak E, Viikmäe B (2011c) Modelling environmentally friendly fairways using Lagrangian trajectories: a case study for the Gulf of Finland, the Baltic Sea. Ocean Dyn 61:1669–1680

    Google Scholar 

  • Soomere T, Delpeche N, Viikmäe B, Quak E, Meier HEM, Döös K (2011d) Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Environ Res 16(Suppl A):49–63

    Google Scholar 

  • Stommel H (1949) Horizontal diffusion due to oceanic turbulence. J Mar Res 8:199–255

    Google Scholar 

  • Umlauf L, Burchard H, Hutter K (2003) Extending the k-ω turbulence model towards oceanic applications. Ocean Model 5:195–218

    Article  Google Scholar 

  • Vandenbulcke L, Beckers J-M, Lenartz F, Barth A, Poulain P-M, Aidonidis M, Meyrat J, Ardhuin F, Tonani M, Fratianni C, Torrisi L, Pallela D, Chiggiato J, Tudor M, Book JW, Martin P, Peggion G, Rixen M (2009) Super-ensemble techniques: application to surface drift prediction. Progr Oceanogr 82:149–167

    Article  Google Scholar 

  • Viikmäe B, Soomere T, Viidebaum M, Berezovski A (2010) Temporal scales for transport patterns in the Gulf of Finland. Estonian J Eng 16:211–227

    Article  Google Scholar 

Download references

Acknowledgement

Thanks are due to two anonymous reviewers for their useful comments and to J. Dippner who motivated us to address in this research the broader aspect of mathematical modelling of transport of pollution in water. This study was supported by the European Community’s Seventh Framework Programme (FP/2007–2013) under grant agreement no. 217246 made with the joint Baltic Sea research and development programme BONUS within the Baltic Way project. The research was partially supported by targeted financing from the Estonian Ministry of Education and Science (grant no. SF0140007s11) and the Estonian Science Foundation (grant no. 9125). TS gratefully acknowledges the support of the Alexander von Humboldt Foundations for performing research in the HZG in June–September 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Lu.

Additional information

Responsible Editor: Joachim W. Dippner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Soomere, T., Stanev, E.V. et al. Identification of the environmentally safe fairway in the South-Western Baltic Sea and Kattegat. Ocean Dynamics 62, 815–829 (2012). https://doi.org/10.1007/s10236-012-0532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-012-0532-x

Keywords

Navigation