Skip to main content
Log in

Why the Euler scheme in particle tracking is not enough: the shallow-sea pycnocline test case

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

During the last decades, the Euler scheme was the common “workhorse” in particle tracking, although it is the lowest-order approximation of the underlying stochastic differential equation. To convince the modelling community of the need for better methods, we have constructed a new test case that will show the shortcomings of the Euler scheme. We use an idealised shallow-water diffusivity profile that mimics the presence of a sharp pycnocline and thus a quasi-impermeable barrier to vertical diffusion. In this context, we study the transport of passive particles with or without negative buoyancy. A semi-analytic solutions is used to assess the performance of various numerical particle-tracking schemes (first- and second-order accuracy), to treat the variations in the diffusivity profile properly. We show that the commonly used Euler scheme exhibits a poor performance and that widely used particle-tracking codes shall be updated to either the Milstein scheme or second-order schemes. It is further seen that the order of convergence is not the only relevant factor, the absolute value of the error also is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnold L (1974) Stochastic differential equations: theory and applications. Wiley, London

    Google Scholar 

  • Beron-Vera FJ, Olascoaga MJ (2009) An assessment of the importance of chaotic stirring and turbulent mixing on the West Florida Shelf. J Phys Oceanogr 39(7):1743–1755

    Article  Google Scholar 

  • Blanke B, Raynaud S (1997) Kinematics of the Pacific equatorial undercurrent: an Eulerian and Lagrangian approach from GCM results. J Phys Oceanogr 27(6):1038–1053

    Article  Google Scholar 

  • Blumberg A, Dunning D, Li H, Heimbuch D, Rockwell Geyer W (2004) Use of a particle-tracking model for predicting entrainment at power plants on the Hudson River. Estuar Coast 27:515–526

    Google Scholar 

  • Brickman D, Smith PC (2001) Lagrangian stochastic modeling in coastal oceanography. J Atmos Ocean Technol 19(1):83–99

    Article  Google Scholar 

  • Brochier T, Lett C, Tam J, Fréon P, Colas F, Ayón P (2008) An individual-based model study of anchovy early life history in the northern Humboldt Current system. Prog Oceanogr 79(2-4):313–325

    Article  Google Scholar 

  • Burchard H, Rennau H (2008) Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model 20(3):293–311

    Article  Google Scholar 

  • Callies U, Plüß A, Kappenberg J, Kapitza H (2011) Particle tracking in the vicinity of Helgoland, North Sea: a model comparison. Ocean Dyn 1–19

  • Christensen A, Daewel U, Jensen H, Mosegaard H, St John M, Schrum C (2007) Hydrodynamic backtracking of fish larvae by individual-based modelling. Mar Ecol Prog Ser 347:221–232

    Article  Google Scholar 

  • de Brauwere A, Deleersnijder E (2010) Assessing the parameterisation of the settling flux in a depth-integrated model of the fate of decaying and sinking particles, with application to fecal bacteria in the Scheldt Estuary. Environ Fluid Mech 10:157–175

    Article  Google Scholar 

  • Deleersnijder E, Beckers JM, Delhez EJM (2006a) On the behaviour of the residence time at bottom of the mixed layer. Environ Fluid Mech 6:541–547

    Article  Google Scholar 

  • Deleersnijder E, Beckers JM, Delhez EJM (2006b) The residence time of settling in the surface mixed layer. Environ Fluid Mech 6:25–42

    Article  Google Scholar 

  • D’Ovidio F, Fernández V, Hernández-García E, López C (2004) Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys Res Lett 31:L17203

    Article  Google Scholar 

  • Elliott AJ, Dale AC, Proctor R (1992) Modelling the movement of pollutants in the UK shelf seas. Mar Pollut Bull 24(12):614–619

    Article  Google Scholar 

  • Gräwe U (2011) Implementation of high-order particle-tracking schemes in a water column model. Ocean Model 36(1–2):80–89

    Article  Google Scholar 

  • Gräwe U, Wolff JO (2010) Suspended particulate matter dynamics in a particle framework. Environ Fluid Mech 10(1):21–39

    Article  Google Scholar 

  • Huret M, Runge JA, Chen C, Cowles G, Xu Q, Pringle JM (2007) Dispersal modeling of fish early life stages: sensitivity with application to Atlantic cod in the western Gulf of Maine. Mar Ecol Prog Ser 347:261–274

    Article  Google Scholar 

  • Iskandarani M, Levin J, Choi BJ, Haidvogel DB (2005) Comparison of advection schemes for high-order h-p finite element and finite volume methods. Ocean Model 10(1–2):233–252

    Article  Google Scholar 

  • Kloeden P, Platen E (1999) Numerical solution of stochastic differential equations (stochastic modelling and applied probability), 3rd edn. Springer, Berlin

    Google Scholar 

  • Krestenitis YN, Kombiadou KD, Savvidis YG (2007) Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf. Ocean Sci 3(1):91–104

    Article  Google Scholar 

  • LaBolle EM, Quastel J, Fogg GE, Gravner J (2000) Diffusion processes in composite porous media and their numerical integration by random walks: generalized stochastic differential equations with discontinuous coefficients. Water Resour Res 36(3):651–662

    Article  Google Scholar 

  • Lalescu C, Teaca B, Carati D (2010) Implementation of high order spline interpolations for tracking test particles in discretized fields. J Comput Phys 229(17):5862–5869

    Article  Google Scholar 

  • Lane A, Prandle D (2006) Random-walk particle modelling for estimating bathymetric evolution of an estuary. Estuar Coast Shelf Sci 68(1-2):175–187

    Article  Google Scholar 

  • Mariano A, Kourafalou V, Srinivasan A, Kang H, Halliwell G, Ryan E, Roffer M (2011) On the modeling of the 2010 Gulf of Mexico oil spill. Dyn Atmos Ocean 52(1-2):322–340

    Article  Google Scholar 

  • Marsaglia G (2003) Xorshift RNGs. J Stat Software 8(14):1–6

    Google Scholar 

  • Marsaglia G, Tsang WW (2000) The ziggurat method for generating random variables. J Stat Software 5(8):1–7

    Google Scholar 

  • Maruyama G (1955) Continuous Markov processes and stochastic equations. Rend Circ Mat Palermo 4:48–90

    Article  Google Scholar 

  • Milstein GN (1974) Approximate integration of stochastic differential equations. Theory Probab Appl 19:557–562

    Google Scholar 

  • Milstein GN (1979) A method of second-order accuracy integration of stochastic differential equations. Theory Probab Appl 23(2):396–401

    Article  Google Scholar 

  • North E, Hood R, Chao SY, Sanford L (2006) Using a random displacement model to simulate turbulent particle motion in a baroclinic frontal zone: a new implementation scheme and model performance tests. J Mar Syst 60(3-4):365–380

    Article  Google Scholar 

  • Ohlmann JC, Mitarai S (2010) Lagrangian assessment of simulated surface current dispersion in the coastal ocean. Geophys Res Lett 37:L17602

    Article  Google Scholar 

  • Penland C (2003) A stochastic approach to nonlinear dynamics: a review. Bull Am Meteorol Soc 84(7):43–52

    Google Scholar 

  • Pietrzak J (1998) The use of TVD limiters for forward-in-time upstream-biased advection schemes in ocean modeling. Mon Weather Rev 126:812–830

    Article  Google Scholar 

  • Prather MJ (1986) Numerical advection by conservation of second-order moments. J Geophys Res 91:197–221

    Article  Google Scholar 

  • Proehl JA, Lynch DR, McGillicuddy DJ, Ledwell JR (2005) Modeling turbulent dispersion on the North Flank of Georges Bank using Lagrangian particle methods. Cont Shelf Res 25(7–8):875–900

    Article  Google Scholar 

  • Shah SHAM, Heemink AW, Deleersnijder E (2011) Assessing Lagrangian schemes for simulating diffusion on non-flat isopycnal surfaces. Ocean Model 39(3–4):351–361

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis (Chapman & Hall/CRC monographs on statistics & applied probability), 1st edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Soomere T, Andrejev O, Myrberg K, Sokolov A (2011) The use of Lagrangian trajectories for the identification of the environmentally safe fairways. Mar Pollut Bull 62(7):1410–1420

    Article  Google Scholar 

  • Spivakovskaya D, Heemink A, Deleersnijder E (2007a) Lagrangian modelling of multi-dimensional advection–diffusion with space-varying diffusivities: theory and idealized test cases. Ocean Dyn 57(3):189–203

    Article  Google Scholar 

  • Spivakovskaya D, Heemink AW, Deleersnijder E (2007b) The backward Îto method for the Lagrangian simulation of transport processes with large space variations of the diffusivity. Ocean Sci 3(4):525–535

    Article  Google Scholar 

  • Stijnen JW, Heemink A, Lin HX (2006) An efficient 3D particle transport model for use in stratified flow. Int J Numer Methods Fluids 51(3):331–350

    Article  Google Scholar 

  • Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180:529–556

    Article  Google Scholar 

  • van der Lee EM, Umlauf L (2011) Internal-wave mixing in the Baltic Sea: Near-inertial waves in the absence of tides. J Geophys Res 116(C10016)

  • Visser AW (1997) Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar Ecol Prog Ser 158:275–281

    Article  Google Scholar 

  • Vitousek S, Fringer OB (2011) Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Model 40(1):72–86

    Article  Google Scholar 

Download references

Acknowledgements

Eric Deleersnijder was a research associate with the Belgian Fund for Scientific Research (F.R.S.-FNRS). His contribution to the present study was achieved in the framework of the Interuniversity Attraction Pole TIMOTHY, which is funded by BELSPO under the contract IAP6.13, and the ARC 10/15-028 (Communauté Française de Belgique). Ulf Gräwe was funded by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie of Germany (BMBF) through grant number 01LR0807B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Gräwe.

Additional information

Responsible Editor: Dirk Olbers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gräwe, U., Deleersnijder, E., Shah, S.H.A.M. et al. Why the Euler scheme in particle tracking is not enough: the shallow-sea pycnocline test case. Ocean Dynamics 62, 501–514 (2012). https://doi.org/10.1007/s10236-012-0523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-012-0523-y

Keywords

Navigation