Skip to main content

Seasonal and interannual variation of the phytoplankton and copepod dynamics in Liverpool Bay

Abstract

The seasonal and interannual variability in the phytoplankton community in Liverpool Bay between 2003 and 2009 has been examined using results from high frequency, in situ measurements combined with discrete samples collected at one location in the bay. The spring phytoplankton bloom (up to 29.4 mg chlorophyll m−3) is an annual feature at the study site and its timing may vary by up to 50 days between years. The variability in the underwater light climate and turbulent mixing are identified as key factors controlling the timing of phytoplankton blooms. Modelled average annual gross and net production are estimated to be 223 and 56 g C m−2 year−1, respectively. Light microscope counts showed that the phytoplankton community is dominated by diatoms, with dinoflagellates appearing annually for short periods of time between July and October. The zooplankton community at the study site is dominated by copepods and use of a fine mesh (80 μm) resulted in higher abundances of copepods determined (up to 2.5 × 106 ind. m−2) than has previously reported for this location. There is a strong seasonal cycle in copepod biomass and copepods greater than 270 μm contribute less than 10% of the total biomass. Seasonal trends in copepod biomass lag those in the phytoplankton community with a delay of 3 to 4 months between the maximum phytoplankton biomass and the maximum copepod biomass. Grazing by copepods exceeds net primary production at the site and indicates that an additional advective supply of carbon is required to support the copepod community.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Andrews WRH, Hutchings L (1980) Upwelling in the southern Benguela Current. Prog Oceanogr 9:1–81

    Article  Google Scholar 

  2. Blanchard GF, Guarini JM, Richard P, Gros P, Mornet F (1996) Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos. Mar Ecol Prog Ser 134:309–313

    Article  Google Scholar 

  3. Brawley JW, Brush MJ, Kremer JN, Nixon SW (2003) Potential applications of an empirical phytoplankton production model to shallow water ecosystems. Ecol Mod 160:55–61

    Article  Google Scholar 

  4. Brush MJ, Brawley JW, Nixon SW, Kremer JN (2002) Modeling phytoplankton production: problems with the Eppley curve and an empirical alternative. Mar Ecol Prog Ser 238:31–45

    Article  Google Scholar 

  5. Carr ME, Friedrichs MAM, Schmeltz M, Noguchi Aita M, Antoine D, Arrigo KR, Asanuma I, Aumont O, Barber R, Behrenfeld M, Bidigare R, Buitenhuis ET, Campbell J, Ciotti A, Dierssen H, Dowell M, Dunne J, Esaias W, Gentili B, Gregg W, Groom S, Hoepffner N, Ishizaka J, Kameda T, Le Q, Lohrenz S, Marra J, Lin F, Moore K, Morel A, Reddy TE, Ryan J, Scardi M, Smyth T, Turpie K, Tilstone G, Waters K, Yamanaka Y (2006) A comparison of global estimates of marine primary production from ocean color. Deep Sea Res Part II 53:741–770

    Article  Google Scholar 

  6. Cefas (2008) http://www.cefas.co.uk/media/166868/liverpool_bay_apr07.pdf last accessed 02 December 2010

  7. Claquin P, Probert I, Lefebvre S, Veron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microb Ecol 51:1–11

    Article  Google Scholar 

  8. Clarke KR, Warwick RM (1994) Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  9. Cloern JE (1996) Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Rev Geophys 34:127–168

    Article  Google Scholar 

  10. Cloern JE, Jassby AD (2010) Patterns and scales of phytoplankton variability in estuarine–coastal ecosystems. Estuar Coast 33:230–241. doi:10.1007/s12237-009-9195-3

    Article  Google Scholar 

  11. Cole BE, Cloern JE (1987) An empirical-model for estimating phytoplankton productivity in estuaries. Mar Ecol Prog Ser 36:299–305

    Article  Google Scholar 

  12. Commission OSPAR (2005) Common procedure for the identification of the eutrophication status of the OSPAR maritime area. Agreement 2005–3. OSPAR Commission, London, p 36

    Google Scholar 

  13. Dam HG, Lopes RM (2003) Omnivory in the calanoid copepod Temora longicornis: feeding, egg production and egg hatching rates. J Exp Mar Biol Ecol 292:119–137

    Article  Google Scholar 

  14. de Jonge VN, Elliott M, Orive E (2002) Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiol 475:1–19

    Article  Google Scholar 

  15. Devlin MJ, Barry J, Mills DK, Gowen RJ, Foden J, Sivyer D, Tett P (2008) Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuar Coast Shelf Sci 79:429–439

    Article  Google Scholar 

  16. Eloire D, Somerfield PJ, Conway DVP, Halsband-Lenk C, Harris R, Bonnet D (2010) Temporal variability and community composition of zooplankton at station L4 in the Western Channel: 20 years of sampling. J Plankton Res 32:657–679

    Article  Google Scholar 

  17. EU (2008) Establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive), The European Parliament and the Council of the European Union, pp 22

  18. Figueiredo GM, Montagnes DJS, Nash RDM (2009) The importance of protozooplankton as prey for copepods in the coastal areas of the central Irish Sea. Hydrobiol 628:227–239. doi:10.1007/s10750-009-9787-8

    Article  Google Scholar 

  19. Fileman E, Smith T, Harris R (2007) Grazing by Calanus helgolandicus and Para-Pseudocalanus spp. on phytoplankton and protozooplankton during the spring bloom in the Celtic Sea. J Exp Mar Biol Ecol 348:70–84

    Article  Google Scholar 

  20. Fock, H, Greve W, Heeren B, Krause M, Winkler G (2001) Synthesis and New Conception of North Sea Research (SYCON). Working Group 8. Zooplankton. Zentrum für Meeres- und Klimaforschung der Universität Hamburg

  21. Foden J, Devlin M, Mills D, Malcolm S (2010) Searching for undesirable disturbance: an application of the OSPAR eutrophication assessment method to marine waters of England and Wales. Biogeochem. doi:10.1007/s10533-010-9475-9

  22. Foster P, Voltolina D, Beardall J (1982) A seasonal study of the distribution of surface state variables in Liverpool Bay. IV. The spring bloom. J Exp Mar Biol Ecol 62:93–115

    Article  Google Scholar 

  23. Gameiro C, Brotas V (2010) Patterns of phytoplankton variability in the Tagus estuary (Portugal). Estuar Coast 33:311–323

    Article  Google Scholar 

  24. Gattuso JP, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoine D (2006) Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3:489–513

    Article  Google Scholar 

  25. Gazeau F, Smith SV, Gentili B, Frankignoulle M, Gattuso JP (2004) The European coastal zone: characterization and first assessment of ecosystem metabolism. Estuar Coast Shelf Sci 60:673–694

    Article  Google Scholar 

  26. Gohin F, Druon JN, Lampert L (2002) A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. Int J Remote Sens 23:1639–1661

    Article  Google Scholar 

  27. Gohin F, Loyer S, Lunven M, Labry C, Froidefond JM, Delmas D, Huret M, Herbland A (2005) Satellite-derived parameters for biological modelling in coastal waters: illustration over the eastern continental shelf of the Bay of Biscay. Remote Sens Environ 95:29–46

    Article  Google Scholar 

  28. Gowen RJ, McCullough G, Dickey-Collas M, Kleppel GS (1998) Copepod abundance in the western Irish Sea: relationship to physical regime, phytoplankton production and standing stock. J Plankton Res 20:315–330

    Article  Google Scholar 

  29. Gowen RJ, McCullough G, Kleppel GS, Houchin L, Elliott P (1999) Are copepods important grazers of the spring phytoplankton bloom in the western Irish Sea? J Plankton Res 21:465–483

    Article  Google Scholar 

  30. Gowen RJ, Mills DK, Trimmer M, Nedwell DB (2000) Production and its fate in two coastal regions of the Irish Sea: the influence of anthropogenic nutrients. Mar Ecol Prog Ser 208:51–64

    Article  Google Scholar 

  31. Gowen RJ, Tett P, Kennington K, Mills DK, Shammon TM, Stewart BM, Greenwood N, Flanagan C, Devlin M, Wither A (2008) The Irish Sea: is it eutrophic? Estuar Coast Shelf Sci 76:239–254

    Article  Google Scholar 

  32. Grangeré K, Lefebvre S, Ménesguen A, Jouenne F (2009) On the interest of using field primary production data to calibrate phytoplankton rate processes in ecosystem models. Estuar Coast Shelf Sci 81:169–178

    Article  Google Scholar 

  33. Greenwood N, Hydes DJ, Mahaffey C, Wither A, Barry J, Sivyer D, Pearce DJ, Hartman SE, Andres O, Lees HE (2011) Spatial and temporal variability in nutrient concentrations in Liverpool Bay, a temperate latitude region of freshwater influence. Ocean Dyn. doi:10.1007/s10236-011-0463-y

  34. Heffernan J, Barry J, Devlin M, Fryer R (2010) A simulation tool for designing nutrient monitoring programmes for eutrophication assessments. Environmetrics 21:3–20

    Google Scholar 

  35. Holley SE, Hydes DJ (2002) ‘Ferry-Boxes’ and data stations for improved monitoring and resolution of eutrophication-related processes: application in Southampton Water UK, a temperate latitude hypernutrified estuary. Hydrobiologia 475(476):99–110

    Article  Google Scholar 

  36. Howarth MJ, Palmer M (2011) The Liverpool Bay Coastal Observatory. Ocean Dyn. doi:10.1007/s10236-011-0458-8

  37. Howarth J, Proctor R, Balfour C, Greenwood N, Knight P, Palmer M, Player R (2008) The Liverpool Bay Coastal Observatory. In: Dahlin H, Bell MJ, Flemming NC, Petersson SE (eds) Coastal to Global Operational Oceanography: achievements and challenges. Proceedings of the 5th international conference on EuroGOOS, Exeter, pp 507–512. ISBN 978-91-974828-6-8

  38. Jickells TD (1998) Nutrient biogeochemistry of the coastal zone. Science 281:217–222. doi:10.1126/science.281.5374.217

    Article  Google Scholar 

  39. Kiørboe T, Mohlenberg F, Riisgard HU (1985) In situ feeding rates of planktonic copepods: a comparison of four methods. J Exp Mar Biol Ecol 88:67–81

    Article  Google Scholar 

  40. Kirkwood DS (1996) Nutrients: practical notes on their determination in seawater. ICES Techniques in Marine Environmental Sciences, No. 17, ICES, Copenhagen

  41. Liu K-K, Atkinson L, Quiñones RA, Talaue-McManus L (2010a) Carbon and nutrient fluxes in continental margins: a global synthesis. Springer, Berlin

    Book  Google Scholar 

  42. Liu Y, Evans MA, Scavia D (2010b) Gulf of Mexico hypoxia: exploring increasing sensitivity to nitrogen loads. Environ Sci Technol 44:5836–5841

    Article  Google Scholar 

  43. Maar M, Nielsen TG, Gooding S, Tönnesson K, Tiselius P, Zervoudaki S, Christou E, Sell A, Richardson K (2004) Trophodynamic function of copepods, appendicularians and protozooplankton in the late summer zooplankton community in the Skagerrak. Mar Biol 144:917–933

    Article  Google Scholar 

  44. Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273–1293

    Article  Google Scholar 

  45. Mills DK, Greenwood N, Kröger S, Devlin M, Sivyer DB, Pearce D, Cutchey S, Malcolm SJ (2005) New approaches to improve the detection of eutrophication in UK Coastal Waters. Environ Res Eng Manag 2:36–42

    Google Scholar 

  46. Palmer MR (2010) The modification of current ellipses by stratification in the Liverpool Bay ROFI. Ocean Dyn 60:219–226. doi:10.1007/s10236-009-0246-x

    Article  Google Scholar 

  47. Panton A, Mahaffey C, Greenwood N, Hopkins J, Montagnes D, Sharples J (2011) Short-term and seasonal variation in metabolic balance in Liverpool Bay. Ocean Dyn. doi:10.1007/s10236-011-0494-4

  48. Peterson WT, Painting SJ, Hutchings L (1990) Diel variations in gut pigment content, diel vertical migration and estimates of grazing impact for copepods in the southern Benguela upwelling region in October 1987. J Plankton Res 12:259–281

    Article  Google Scholar 

  49. Pitois SG, Shaw M, Fox CJ, Frid CLJ (2009) A new fine-mesh zooplankton time series from the dove sampling station (North Sea). J Plankton Res 31:337–343

    Article  Google Scholar 

  50. Platt T, Gallegos CL, Harrison WGDFO (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  51. Ragueneau O, Quéguiner B, Tréguer P (1996) Contrast in biological responses to tidally induced vertical mixing for two macrotidal ecosystems of Western Europe. Estuar Coast Shelf Sci 42:645–665

    Article  Google Scholar 

  52. Soetaert K, Middelburg JJ, Heip C, Meire P, Van Damme S, Maris T (2006) Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, The Netherlands). Limnol Oceanogr 51:409–423

    Article  Google Scholar 

  53. Steedman HF (1976) Zooplankton fixation and preservation. The Unesco Press, Paris

    Google Scholar 

  54. Tett P (1987) Plankton. In: Baker JM, Wolff JW (eds) Biological surveys of estuaries and coasts. Cambridge University Press, Cambridge, pp 280–341

    Google Scholar 

  55. Tett P, Gowen RJ, Mills D, Fernandes T, Gilpin L, Huxham M, Kennington K, Read P, Service M, Wilkinson M, Malcolm S (2007) Defining and detecting undesirable disturbance in the context of marine eutrophication. Mar Pollut Bull 53:282–297

    Article  Google Scholar 

  56. Utermöhl H (1931) Neue Wege in der quantitativen Erfassung des Planktons. Verh Int Ver Theor Angew Limnol 5:567–595

    Google Scholar 

  57. van der Molen J, Bolding K, Greenwood N, Mills DK (2009) A 1-D vertical multiple grain size model of suspended particulate matter in combined currents and waves in shelf seas. J Geophys Res 114:F01030. doi:10.1029/2008JF001150

    Article  Google Scholar 

  58. Vincent MA, Atkins SM, Lumb CM, Golding N, Lieberknecht LM, Webster M (2004) Marine nature conservation and sustainable development - the Irish Sea Pilot. Report to Defra by the Joint Nature Conservation Committee, Peterborough

  59. Westberry T, Behrenfeld MJ, Siegel DA, Boss E (2008) Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochemical Cycles, 22 art. no. GB2024

  60. Widdicombe CE, Eloire D, Harbour D, Harris RP, Somerfield PJ (2010) Long-term phytoplankton community dynamics in the Western English Channel. J Plankton Res 32:643–655

    Article  Google Scholar 

  61. Wiltshire KH, Malzahn AM, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302

    Article  Google Scholar 

  62. Yamashita Y, Panton A, Mahaffey C, Jaffé R (2010) Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation emission matrix fluorescence and parallel factor analysis. Ocean Dyn. doi:10.1007/s10236-010-0365-4

Download references

Acknowledgements

Work was carried out by Cefas under Defra contracts A1228, SLA25, E2202 and E5302. We are grateful to Lars Edler, Katie Owen and Thomas McGowan for analysis of phytoplankton samples and Cheryl Crisp and Oliver Williams for analysis of zooplankton samples. The authors would like to acknowledge the NERC funding of the Coastal Observatory and to thank all the sea going staff at Cefas, NOCL, University of Bangor and University of Liverpool and the ship’s crew who assisted in the collection of samples. MODIS and MERIS ocean colour data were obtained under a service level agreement with the MarCoast I and II projects. Lander data were supplied by NOCL. We are grateful to two anonymous reviewers for their constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naomi Greenwood.

Additional information

This article is part of the Topical Collection on the UK National Oceanography Centre’s Irish Sea Coastal Observatory

Responsible Editor: Claire Mahaffey

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 159 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Greenwood, N., Forster, R.M., Créach, V. et al. Seasonal and interannual variation of the phytoplankton and copepod dynamics in Liverpool Bay. Ocean Dynamics 62, 307–320 (2012). https://doi.org/10.1007/s10236-011-0500-x

Download citation

Keywords

  • Primary production
  • Grazing
  • Phytoplankton
  • Zooplankton
  • Liverpool Bay
  • Coastal