Skip to main content

Advertisement

Log in

Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The Bay of Fundy in eastern Canada has the highest tides in the world. Harnessing the tidal energy in the region has long been considered. In this study, the effects of tidal in-stream energy extraction in the Minas Passage on the three-dimensional (3D) tidal circulation in the Bay of Fundy (BoF) and the Gulf of Maine (GoM) are examined using a nested-grid coastal ocean circulation model based on the Princeton Ocean Model (POM). The nested-grid model consists of a coarse-resolution (~4.5 km) parent sub-model for the GoM and a high-resolution (~1.5 km) child sub-model for the BoF. The tidal in-stream energy extraction in the model is parameterized in terms of nonlinear Rayleigh friction in the momentum equation. A suite of numerical experiments are conducted to determine the ranges of extractable tidal in-stream energy and resulting effects on the 3D tidal circulation over the Bay of Fundy and the Gulf of Maine (BoF-GoM) in terms of the Rayleigh friction coefficients. The 3D model results suggest that the maximum energy extraction in the Minas Passage increases tidal elevations and tidal currents throughout the GoM and reduces tidal elevations and circulation in the upper BoF, especially in the Minas Basin. The far-field effect of tidal energy extraction in the Passage on the 3D tidal circulation in the BoF-GoM is examined in two cases of harnessing tidal in-stream energy from (a) the entire water column and (b) the lower water column within 20 m above the bottom in the Passage. The 3D model results demonstrate that tidal in-stream energy extraction from the lower water column has less impact on the tidal elevations and circulation in the BoF-GoM than the energy extraction from the whole water column in the Minas Passage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Aretxabaleta AL, McGillicuddy Jr DJ, Smith KW, Lynch DR (2008) Model simulations of the Bay of Fundy Gyre: 1. Climatological results. J Geophys Res 113:C10027. doi:10.1029/2007JC004480

    Article  Google Scholar 

  • Blanchfield J, Garrett C, Wild P, Rowe A (2008a) The extractable power from a channel linking a bay to the open ocean. Proc Inst Mech Eng, A J Power Energy 222:289–297

    Article  Google Scholar 

  • Blanchfield J, Garrett C, Rowe A, Wild P (2008b) Tidal stream power resource assessment for Masset Sound, Haida Gwaii. Proc Inst Mech Eng, A J Power Energy 222:485–492

    Article  Google Scholar 

  • Blumberg AF, Mellor GL (1983) Diagnostic and prognostic numerical circulation studies of the South Atlantic bight. J Geophys Res 88:4579–4592. doi:10.1029/JC088iC08p04579

    Article  Google Scholar 

  • Chang J (2008) Hydrodynamic modelling and feasibility study of harnessing tidal power at the Bay of Fundy. University of Southern California, USA

    Google Scholar 

  • Chapman DC (1985) Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J Phys Oceanogr 15:1060–1065

    Article  Google Scholar 

  • Davies AM, Flather RA (1978) Computing extreme meteorologically induced currents, with application to the northwest European continental shelf. Cont Shelf Res 7:643–683. doi:10.1016/0278-4343(87)90010-0

    Article  Google Scholar 

  • Debreu L, Blayo E (2008) Two-way embedding algorithms: a review. Ocean Dyn 58(5):1616–7341. doi:10.1007/s10236-008-0150-9

    Article  Google Scholar 

  • Dupont F, Hannah CG, Greenberg D (2005) Modelling the sea level in the upper Bay of Fundy. Atmos Ocean 43:33–47

    Article  Google Scholar 

  • Garrett C (1972) Tidal resonance in the Bay of Fundy and Gulf of Maine. Nature 238:441–443. doi:10.1038/238441a0

    Article  Google Scholar 

  • Garrett C, Cummins P (2004) Generating power from tidal currents. J Waterway Port Coast Ocean Eng 130:114–118. doi:10.1061/(ASCE)0733-950X(2004)130:3(114)

    Article  Google Scholar 

  • Greenberg DA (1979) A numerical model investigation of tidal phenomena in the Bay of Fundy and Gulf of Maine. Mar Geod 2:161–187

    Article  Google Scholar 

  • Greenberg DA (1983) Modelling the mean barotropic circulation in the Bay of Fundy and Gulf of Maine. J Phys Oceanogr 13:886–906. doi:10.1175/1520-0485(1983)013<0886:MTMBCI>2.0.CO;2

    Article  Google Scholar 

  • Karsten RH, McMillian JM, Lickley MJ (2008) Assessment of tidal current energy in Minas Passage, Bay of Fundy. Proc IMechE, Part A: J Power Energy 222:493–507. doi:10.1243/09576509JPE555

    Article  Google Scholar 

  • Martinho AS, Batteen ML (2006) On reducing the slope parameter in terrain-following numerical ocean models. Ocean Model 13:166–175. doi:10.1016/j.ocemod.2006.01.003

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Article  Google Scholar 

  • Miyazawa Y, Minato S (2000) Development of a two-way nesting code for the Princeton Ocean Model. JAMSTEC R 40:11–22

    Google Scholar 

  • Moody JA, Butman B, Beardsley RC, Brown WS, Daifuku P, Irish JD, Mayer DA, Mofield HO, Petrie B, Ramp S, Smith P, Wright WR (1984) Atlas of tidal elevation and current observations on the Northeast American continental shelf and slope. US Geological Survey Bulletin 1611, 122 p

  • Neill SP, Litt EJ, Couch SJ, Davies AG (2009) The impact of tidal stream turbines on large-scale sediment dynamics. Renew Energy 34:2803–2812. doi:10.1016/j.renene.2009.06.015

    Article  Google Scholar 

  • Oey, L.-Y., and P. Chen (1992) A nested-grid ocean model: with application to the simulation of meanders and eddies in the Norwegian coastal current. J Geophys Res 97(C12):20063–20086

    Article  Google Scholar 

  • Oey LY (2005) A wetting and drying scheme for POM. Ocean Model 9:133–150. doi:10.1016/j.ocemod.2004.06.002

    Article  Google Scholar 

  • Orlanski I (1976) A simple boundary condition for unbounded hyperbolic flows. J Comput Phys 21:251–269. doi:10.1016/0021-9991(76)90023-1

    Article  Google Scholar 

  • Shan S, Sheng J, Thompson KR, Greenberg DA (2011) Simulating the three-dimensional circulation and hydrography of Halifax Harbour using a multi-nested coastal ocean circulation model. Ocean Dyn 61(7):951–976

    Article  Google Scholar 

  • Shapiro GI (2011) Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Sci 7:165–174. doi:10.5194/os-7-165-2011

    Article  Google Scholar 

  • Sheng J, Greatbatch RJ, Zhai X, Tang L (2005) A new twoway nesting technique for ocean modeling based on the smoothed semi-prognostic method. Ocean Dyn 55:162–177

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equation. I. The basic experiment. Mon Weather Rev 21:99–165

    Article  Google Scholar 

  • Sucsy PV, Pearce BR, Panchang VG (1993) Comparison of two- and three-dimensional model simulation of the effect of a tidal barrier on the Gulf of Maine tides. J Phys Oceanogr 23:1231–1248

    Article  Google Scholar 

  • Sutherland G, Foreman M, Garrett C (2007) Tidal current energy assessment for Johnstone Strait, Vancouver Island. J Power Energy 221:147–157

    Google Scholar 

  • Tee KT (1977) Tide-induced residual current erification of a numerical model. J Phys Oceanogr 7:396–402

    Article  Google Scholar 

  • Wu Z, Battisti DS, Sarachik ES (2000) Rayleigh friction, Newtonian cooling, and the linear response to steady tropical heating. J Atmos Sci 57:1937–1957

    Article  Google Scholar 

  • Yang B, Sheng J (2008) Process study of coastal circulation over the inner Scotian Shelf using a nested-grid ocean circulation model, with a special emphasis on the storm-induced circulation during tropical storm Alberto in 2006. Ocean Dyn 58:375–396. doi:10.1007/s10236-008-0149-2

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by the Offshore Energy and Environmental Research. The authors wish to thank reviewers for their constructive comments and suggestions that helped to strengthen our article, Peter Smith and his group at BIO for sharing their ADCP data, and Richard Karsten, Joel Culina, Keir Colbo, and Kyoko Ohashi for their suggestions. This research utilized ACEnet computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyu Sheng.

Additional information

Responsible Editor: Herman Gerritsen

Topical Collection on Joint Numerical Sea Modelling Group Workshop 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, D., Sheng, J., Greenberg, D.A. et al. Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dynamics 61, 1845–1868 (2011). https://doi.org/10.1007/s10236-011-0481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-011-0481-9

Keywords

Navigation