Ocean Dynamics

, Volume 61, Issue 10, pp 1567–1585 | Cite as

Tidal and wind-driven surface currents in the German Bight: HFR observations versus model simulations

  • Alexander PortEmail author
  • Klaus-Werner Gurgel
  • Joanna Staneva
  • Johannes Schulz-Stellenfleth
  • Emil V. Stanev
Part of the following topical collections:
  1. Topical Collection on Multiparametric observation and analysis of the Sea


Tidal and wind-driven surface currents in the German Bight between shallow mudflats of the North Frisian islands and the island of Helgoland are studied using coastal high-frequency radar (HFR) observations and hindcasts from a primitive equation numerical model. The setup of the observational system is described, and estimates of expected measurement errors are given. A quantitative comparison of numerical model results and observations is performed. The dominant tidal components are extracted from the two data sources using tidal harmonic analysis and the corresponding tidal ellipses are defined. Results show that the spatial patterns of different tidal ellipse parameters are consistent in the two data sets. Model sensitivity studies with constant and variable salinity and temperature distributions are used to study density-related mechanisms of circulation. Furthermore, the role of the surface wind field in driving the German Bight circulation is investigated using the complex correlation between wind and surface current vectors. The observed change of the respective correlation patterns from the coastal to open ocean is shown to be due to a combination of density effects, the coastline and topography. The overall conclusion is that HFR observations resolve the small-scale and rapidly evolving characteristics of coastal currents well in the studied area and could present an important component for regional operational oceanography when combined with numerical modelling. Some unresolved issues associated with the complex circulation and large instability of circulation in front of the Elbe River Estuary justify further considerations of this area using dedicated surveys and modelling efforts.


Radar HFR Wind-driven currents Tidal currents Tidal analysis Complex correlation Coastal oceanography 



HF radar observations were provided by the German national research project PRISMA (BMFT-Projekt 03F0558A1). This work was supported by the FP7-SPACE-2009-1 nr. 242284 project FIELD-AC (Fluxes, Interactions and Environment at the Land-Ocean Boundary. Downscaling, Assimilation and Coupling) in cooperation with the German COSYNA (Coastal Observing System for Northern and Arctic Seas) project. We are grateful to anonymous reviewers for the useful comments and advice on how to improve the paper.


  1. Backhaus JO (1980) Simulation von Bewegungsvorgängen in der Deutschen Bucht. Dtsch Hydrogr Z 15:7–56Google Scholar
  2. Barrick DE, Evans MW, Weber BL (1977) Ocean surface currents mapped by radar. Science 198(4313):138–144CrossRefGoogle Scholar
  3. Barth A, Alvera-Azcárate A, Weisberg RH (2008) Assimilation of high-frequency radar currents in a nested model of the West Florida Shelf. J Geophys Res 113(C8). doi: 10.1029/2007JC004585 Google Scholar
  4. Barth A, Alvera-Azcárate A, Gurgel KW, Staneva J, Port A, Beckers JM, Stanev E (2010) Ensemble smoother for optimizing tidal boundary conditions by assimilation of high-frequency radar surface currents. Application to the German Bight. Ocean Sci 6:161–178CrossRefGoogle Scholar
  5. Barth A, Alvera-Azcárate A, Beckers JM, Staneva J, Stanev EV, Schulz-Stellenfleth J (2011) Correcting surface winds by assimilating high-frequency radar surface currents in the German Bight. Ocean Dyn. doi: 10.1007/s10236-010-0369-0 Google Scholar
  6. Blackman RB, Tukey J (1959) Particular pairs of windows. In: The measurement of power spectra, from the point of view of communications engineering. Dover, New YorkGoogle Scholar
  7. Breivik Ø, Sætra Ø (2001) Real time assimilation of HF radar currents into a coastal ocean model. J Mar Syst 28(3–4):161–182. doi: 10.1016/S0924-7963(01)00002-1 CrossRefGoogle Scholar
  8. BSH (2011) Berechnete strömungen des operationellen modellsystems des BSH.
  9. Burchard H, Bolding K (2002) GETM—a general estuarine transport model. Tech. rep., Institute for Environment and Sustainability, ISPRA, ItalyGoogle Scholar
  10. Carbajal N, Pohlmann T (2004) Comparison between measured and calculated tidal ellipses in the German Bight. Ocean Dyn 54(5):520–530CrossRefGoogle Scholar
  11. Chapman RD, Shay LK, Graber HC, Edson JB, Karachintsev A, Trump CL, Ross DB (1997) On the accuracy of HF radar surface current measurements: intercomparisons with ship-based sensors. J Geophys Res 102(C8):18737–18748CrossRefGoogle Scholar
  12. Czitrom S, Budéus G, Krause G (1988) A tidal mixing front in an area influenced by land runoff. Cont Shelf Res 8(3):225–237CrossRefGoogle Scholar
  13. Davies AM, Furnes GK (1980) Observed and computed M2 tidal currents in the North Sea. J Phys Oceanogr 10(2):237–257CrossRefGoogle Scholar
  14. Davies AM, Hall P, Howarth MJ, Knight PJ, Player RJ (2001) Comparison of observed (HF radar and ADCP measurements) and computed tides in the North Channel of the Irish Sea. J Phys Oceanogr 31(7):1764–1785CrossRefGoogle Scholar
  15. Dick S, Eckard K, Müller-Navarra S, Klein H, Komo H (2001) The operational circulation model of BSH (BSHcmod)—model description and validation. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie (BSH) 29, BSHGoogle Scholar
  16. Dick SK, Sötje K (1990) Ein operationelles Ölausbreitungsmodell für die deutsche bucht. Dtsch Hydrogr Z Ergänzungsheft (A) 16:243–254Google Scholar
  17. Dippner JW (1990) A frontal-resolving model for the German Bight. Cont Shelf Res 13:49–66CrossRefGoogle Scholar
  18. Essen HH, Gurgel KW, Schirmer F (1983) Tidal and wind-driven parts of surface currents, as measured by radar. Ocean Dyn 36(3):81–96Google Scholar
  19. Essen HH, Gurgel KW, Schlick T (2000) On the accuracy of current measurements by means of HF radar. IEEE J Oceanic Eng 25(4):472–480. doi: 10.1109/48.895354 CrossRefGoogle Scholar
  20. Flather RA (1976) A tidal model of the north-west European continental shelf. Mem Soc R Sci Liège, ser 6 10:141–164Google Scholar
  21. Graber HC, Haus BK, Chapman RD, Shay LK (1997) HF radar comparisons with moored estimates of current speed and direction: expected differences and implications. J Geophys Res 102(C8):18749–18766. doi: 10.1029/97JC01190 CrossRefGoogle Scholar
  22. Gurgel KW, Antonischki G, Essen HH, Schlick T (1999a) Wellen Radar (WERA): a new ground-wave HF radar for ocean remote sensing. Coast Eng 37:219–234. doi: 10.1016/S0378-3839(99)00027-7 CrossRefGoogle Scholar
  23. Gurgel KW, Essen HH, Kingsley SP (1999b) HF radars: physical limitations and recent developments. Coast Eng 37:201–218CrossRefGoogle Scholar
  24. Hoteit I, Cornuelle B, Kim S, Forget G, Köhl A, Terrill E (2009) Assessing 4D-VAR for dynamical mapping of coastal high-frequency radar in San Diego. Dynam Atmos Ocean 48(1–3):175–197. doi: 10.1016/j.dynatmoce.2008.11.005 CrossRefGoogle Scholar
  25. Jacovitti G, Cusani R (1992) Performance of normalized correlation estimators for complex processes. IEEE Trans Signal Process 40(1):114–128. doi: 10.1109/78.157187 CrossRefGoogle Scholar
  26. Janssen F, Schrum C, Backhaus J (1999) A climatological data set of temperature and salinity for the Baltic Sea and the North Sea. Ocean Dyn 51(0):5–245Google Scholar
  27. Kundu PK (1976) Ekman veering observed near the ocean bottom. J Phys Oceanogr 6(2):238–242CrossRefGoogle Scholar
  28. Lipa B, Nyden B, Ullman DS, Terrill E (2006) SeaSonde radial velocities: derivation and internal consistency. IEEE Ocean Eng Soc News1 31(4):850–861. doi: 10.1109/JOE.2006.886104 CrossRefGoogle Scholar
  29. Liu Y, Weisberg RH, Shay LK (2007) Current patterns on the West Florida Shelf from joint self-organizing map analyses of HF radar and ADCP data. J Atmos Ocean Technol 24(4):702–712. doi: 10.1175/JTECH1999.1 CrossRefGoogle Scholar
  30. Liu Y, Weisberg RH, Merz CR, Lichtenwalner S, Kirkpatrick GJ (2010) HF radar performance in a low-energy environment: CODAR SeaSonde experience on the West Florida Shelf. J Atmos Ocean Technol 27(10):1689–1710, doi: 10.1175/2010JTECHO720.1 CrossRefGoogle Scholar
  31. Maier-Reimer E (1977) Residual circulation in the North Sea due to the M2 tide and mean annual wind stress. Ocean Dyn 30(3):69–80Google Scholar
  32. Otto L, Zimmerman JTF, Furnes GK, Mork M, Saertre R, Becker G (1990) Review of the physical oceanography of the north sea. Neth J Sea Res 26:161–238CrossRefGoogle Scholar
  33. Paduan JD, Shulman I (2004) HF radar data assimilation in the Monterey Bay area. J Geophys Res 109(C7). doi: 10.1029/2003JC001949 Google Scholar
  34. Parks AB, Shay LK, Johns WE, Martinez-Pedraja J, Gurgel KW (2009) HF radar observations of small-scale surface current variability in the Straits of Florida. J Geophys Res 114(C8). doi: 10.1029/2008JC005025 Google Scholar
  35. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using t_tide. Comput Geosci 28(8):929–937CrossRefGoogle Scholar
  36. PRISMA (1994) Prozesse im Schadstoffkreislauf Meer-Atmosphäre: Ökosystem Deutsche Bucht. BMFT-Projekt 03F0558A1 (1.1.1990–31.10.1993). Abschlussbericht, ZMK-Universität HamburgGoogle Scholar
  37. Schirmer F, Essen HH, Gurgel KW, Schlick T, Hessner K (1994) Local variability of surface currents based on HF-radar measurements. In: Sündermann J (ed) Circulation and contaminant fluxes in the North Sea. Springer, BerlinGoogle Scholar
  38. Schrum C (1997) Thermohaline stratification and instabilities at tidal mixing fronts. Results of an eddy resolving model for the German Bight. Cont Shelf Res 17(6):689–716CrossRefGoogle Scholar
  39. Schulz-Stellenfleth J, Stanev E (2010) Statistical assessment of ocean observing networks—a study of water level measurements in the German Bight. Ocean Model 33(3–4):270–282CrossRefGoogle Scholar
  40. Schulz-Stellenfleth J, Wahle K, Staneva J, Seemann J, Cysewski M, Gurgel K, Schlick T, Ziemer F, Stanev E (2010) Nutzung eines HF-Radarsystems zur Beobachtung und Vorhersage von Strömungen in der Deutschen Bucht im Rahmen von COSYNA. DGM Nachrichten 3/10:3–8Google Scholar
  41. Shulman I, Paduan JD (2009) Assimilation of HF radar-derived radials and total currents in the Monterey Bay area. Deep Sea Res II 56(3–5):149–160. doi: 10.1016/j.dsr2.2008.08.004 CrossRefGoogle Scholar
  42. Simpson J, Hunter J (1974) Fronts in the Irish Sea. Nature 250:404–406. doi: 10.1038/250404a0 CrossRefGoogle Scholar
  43. Soulsby R (1983) The bottom boundary layer of shelf seas. In: Johns B (ed) Physical oceanography of coastal and shelf seas, vol 35, chap 5. Elsevier, Amsterdam, pp 189–266CrossRefGoogle Scholar
  44. Staneva J, Stanev E, Wolff JO, Badewien T, Reuter R, Flemming B, Bartholomä A, Bolding K (2009) Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Cont Shelf Res 29:302–319CrossRefGoogle Scholar
  45. Taylor GI (1922) Tidal oscillations in gulfs and rectangular basins. Proc Lond Math Soc s2–20(1):148–181. doi: 10.1112/plms/s2-20.1.148 CrossRefGoogle Scholar
  46. Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15. doi: 10.1109/TAU.1967.1161901 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alexander Port
    • 1
    Email author
  • Klaus-Werner Gurgel
    • 2
  • Joanna Staneva
    • 3
  • Johannes Schulz-Stellenfleth
    • 3
  • Emil V. Stanev
    • 3
  1. 1.ICBMUniversity of OldenburgOldenburgGermany
  2. 2.Institute of OceanographyUniversity of HamburgHamburgGermany
  3. 3.Institute for Coastal ResearchGKSS Research CentreGeesthachtGermany

Personalised recommendations