Skip to main content
Log in

Interactions between tides and other frequencies in the Indonesian seas

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Interactions of tidal constituents and the transfer of energy from the tidal frequencies to other frequencies are investigated using 3-D tidal simulations for the Indonesian seas, focusing on an area of active internal tides. Semidiurnal tides strongly affect diurnal tides; however, semidiurnal tides are essentially unaffected by diurnal tides. The semidiurnal and diurnal constituents interact with each other through non-linear interference, both destructive and constructive. Semidiurnal tides generate harmonics at nearly the diurnal frequency and higher vertical wavenumbers. In Ombai Strait, these harmonics are out of phase with the diurnal tides and interact destructively with the diurnal tides, effectively negating the diurnal response in some locations. However, this is not a general response, and interactions differ between locations. Energy is also transferred from both semidiurnal and diurnal tides to other frequencies across the spectrum, with more energy originating from semidiurnal tides. These energy transfers are not homogeneous, and the spectral responses differ between the Makassar and Ombai Straits, with the region east of Ombai showing a more active surface response compared to a more intense benthic response in Makassar. In deep water away from topography, velocity spectra generally follow the Garrett–Munk (GM) relation. However, in areas of internal tide generation, spectral density levels exceed GM levels, particularly between 4 and 8 cycles per day (cpd), indicating increased non-linear interactions and energy transfer through resonant interactions. The model indicates strong surface trapping of internal tides, with surface velocity spectra having significantly higher energy between 4 and 8 cpd even 100 km away from the prominent sill generating the internal tides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alford MH (2006) Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophy Res Lett 35:L15602. doi:10.1029/2008GRL034720

    Article  Google Scholar 

  • Alford MH, Gregg MC (2001) Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J Geophys Res 106:16947–16968

    Article  Google Scholar 

  • Alford MH, Gregg MC, Ilyas M (1999) Diapycnal mixing in the Banda Sea: results of the first microstructure measurements in the Indonesian Throughflow. Geophys Res Lett 26:741–2744

    Article  Google Scholar 

  • Egbert GD, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Oceanic Tech 19:22,475–22,502

    Article  Google Scholar 

  • Ffield A, Gordon AL (1992) Vertical mixing in the Indonesian thermocline. J Phs Oceanog 22:186–195

    Google Scholar 

  • Ffield A, Gordon AL (1996) Tidal mixing signatures in the Indonesian seas. J Phs Oceanog 26:1924–1935

    Article  Google Scholar 

  • Flather RA, Proctor R (1983) Prediction of North Sea storm surge using numerical models: recent developments in the UK. In: Sundermann J, Lenz W (eds) North Sea dynamics. Springer, New York, pp 299–317

    Google Scholar 

  • Foreman MGG (1977) Manual for tidal height analysis and prediction. Pacific Marine Science report no. 77-10. Institute of Ocean Sciences, Patricia Bay, Sidney, p 58

    Google Scholar 

  • Foreman MGG (1978) Manual for tidal current analysis and prediction. Pacific Marine Science report no. 78-6. Institute of Ocean Sciences, Patricia Bay, Sidney, p 70

    Google Scholar 

  • Furuichi N, Hibiya T, Niwa T (2005) Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field. J Phs Oceanog 35:2104–2109

    Article  Google Scholar 

  • Garrett C (2003) Internal tides and ocean mixing. Science 301:1858–1859

    Google Scholar 

  • Garrett CJ, Munk WH (1975) Space–time scales of internal waves: a progress report. J Geophys Res 3:225–264

    Google Scholar 

  • Garrett C, Munk W (1979) Internal waves in the ocean. Ann Rev Fluid Mech 11:339–369

    Article  Google Scholar 

  • Gordon AL (2005) Oceanography of the Indonesian seas and their throughflow. Oceanography 18:14–27

    Google Scholar 

  • Gordon A, Soesilo I, Brodjonegoro I, Ffield A, Jaya I, Molcard R, Sprintall J, Susanto RD, van Aken H, Wijffels S, Wirasantosa S (2006) The first 1.5 years of INSTANT data reveal the complexities of the Indonesian Throughflow. CLIVAR Exchanges 11:10–11

    Google Scholar 

  • Hatayama T (2004) Transformation of the Indonesian throughflow water by vertical mixing and its relation to tidally generated internal waves. J Oceanog 60:569–585

    Article  Google Scholar 

  • Hatayama T, Awaji T, Akitomo K (1996) Tidal currents in the Indonesian seas and their effect on transport and mixing. J Geophys Res 101:12,353–12,373

    Article  Google Scholar 

  • Hibiya T, Nagasawa M, Niwa Y (2002) Non-linear energy transfer within the ocean internal wave spectra at mid and high latitudes. J Geophys Res 107. doi:10.1029/2006JC001210

  • Jayne SR, St. Laurent LC (2001) Parameterizing tidal dissipation over rough topography. Geo Res Lett 28:811–814

    Article  Google Scholar 

  • Jochum M, Potemra J (2008) Sensitivity of tropical rainfall to Banda Sea diffusivity in the community climate system model. J Climate 21:6445–6454. doi:10.1175.2008JCLI2230.1

    Article  Google Scholar 

  • Kantha LH, Clayson CA (2000) Numerical models of oceans and oceanic processes. Academic, San Diego, p 940

    Google Scholar 

  • Koch-Larrouy A, Madec G, Bouruet-Aubertot P, Gerkema T, Bessières L, Molcard R (2007) On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophys Res Lett 34:L04604. doi:10.1029/2006GL028405

    Article  Google Scholar 

  • Koch-Larrouy A, Madec G, Iudicone D, Molcard R, Atmadipoera A (2008a) Physical processes contributing in the water mass transformation of the Indonesian Throughflow. Ocean Dynamics 58:275–288. doi:10.1007/s10236-008-0154-5

    Article  Google Scholar 

  • Koch-Larrouy A, Madec G, Blanke B, Molcard R (2008b) Water mass transformation along the Indonesian throughflow in an OGCM. Ocean Dynamics 58:289–309. doi:10.1007/s10236-008-0155-4

    Article  Google Scholar 

  • Koch-Larrouy A, Lengaigne M, Terray P, Madec G, Masson S (2009) Tidal mixing in the Indonesian seas and its effect on the tropical climate system. Climate Dynamics 34:891–904. doi:10.1007/s00382-009-0642-4

    Article  Google Scholar 

  • Kowalik Z, Proshutinsky AY (1995) Topographic enhancement of tidal motion in the western Barents Sea. J Geophys Res 100:2613–2637

    Article  Google Scholar 

  • Loder JW (1980) Topographic rectification of tidal currents on the sides of Georges Bank. J Phys Oceanogr 10:1399–1416

    Article  Google Scholar 

  • MacKinnon J A, Winters K B (2010) Tidal mixing hotspots governed by rapid parametric subharmonic instability. J Phys Ocean (in revision)

  • Martinsen EA, Engedahl H (1987) Implementation and testing of a lateral boundary scheme as an open boundary condition in a barotropic ocean model. Coastal Eng 11:603–627

    Article  Google Scholar 

  • Mazzega P, Bergé M (1984) Ocean tides in the Asian semienclosed seas from TOPEX/POSEIDON. J Geophys Res 99:24867–24881

    Article  Google Scholar 

  • McComas CH (1977) Equilibrium mechanisms within the oceanic internal wave field. J Phys Oceanog 7:836–845

    Article  Google Scholar 

  • McComas CH, Müller P (1981) Equilibrium mechanisms within the oceanic internal wave field. J Phys Oceanog 11:970–986

    Article  Google Scholar 

  • Müller P, Holloway G, Henyey F, Pomphrey N (1986) Nonlinear interactions among internal gravity waves. Rev Geophysics 24:493–536

    Article  Google Scholar 

  • Munk W (1981) Internal Waves and small scale mixing processes. In: Warren B, Wunsch C (eds) Evolution of physical oceanography. MIT, Cambridge, pp 264–291

    Google Scholar 

  • Munk W, Wunsch C (1998) The moon and mixing: abyssal recipes II. Deep-Sea Res 45:1977–2010

    Article  Google Scholar 

  • Nicholls N (1989) Sea surface temperature and Australian winter rainfall. J Climate 2:965–973

    Article  Google Scholar 

  • Nicholls N (1995) All-India summer monsoon rainfall and sea surface temperatures around Northern Australia and Indonesia. J Climate 8:1463–1467

    Article  Google Scholar 

  • Niwa Y, Hibiya T (2001) Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J Geophys Res 106:22441–22449

    Article  Google Scholar 

  • Ray RD, Egbert GD, Erofeeva S (2005) Brief overview of tides in the Indonesian seas. Oceanography 18:74–79

    Google Scholar 

  • Robertson R (2005) Barotropic and baroclinic tides in the Weddell Sea. Antarct Sci 17:461–474

    Article  Google Scholar 

  • Robertson R (2006) Modeling internal tides over Fieberling Guyot: resolution, parameterization, performance. Ocean Dynamics 56:430–444. doi:10.1007/s10236-006-0062-5

    Article  Google Scholar 

  • Robertson R (2010) Tidal currents and mixing at the INSTANT mooring locations. Dynam Oceans Atmos 50:331–373

    Article  Google Scholar 

  • Robertson R, Ffield A (2005) M2 baroclinic tides in the Indonesian seas. Oceanography 18:62–73

    Google Scholar 

  • Robertson R, Ffield A (2008) Baroclinic tides in the Indonesian seas: tidal fields and comparisons to observations. J Geophys Res 113:C07031. doi:10.1029/2007JC004677

    Article  Google Scholar 

  • Robertson R, Beckmann A, Hellmer H (2003) Tidal dynamics in the Ross Sea. Antarct Sci 15:41–46

    Google Scholar 

  • Robinson IS (1981) Tidal vorticity and residual circulation. Deep-Sea Res 28A:195–212

    Article  Google Scholar 

  • Schiller A (2004) Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region. Ocean Model 6:31–49

    Google Scholar 

  • Schroyer EL, Moum JN, Nash JD (2010) Energy transformations and dissipation of nonlinear internal waves over New Jersey’s continental shelf. Nonlinear Proc Geophys 17:345–360. doi:10.5194/npg-17-345-2010

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2003) A method for computing horizontal pressure gradient force in an ocean model with non-aligned vertical coordinates. J Geophys Res 108:35.1–35.34. doi:10:1029/2001JC001047

    Article  Google Scholar 

  • Simmons HL (2008) Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Model 21:126–138. doi:10.1012/j.ocemod.2008.01.002

    Google Scholar 

  • Simmons HL, Hallberg RW, Arbic BK (2004) Internal wave generation in a global baroclinic tide model. Deep Sea Res II 51:3043–3068. doi:10.1016/j.dsr2.2004.09.015

    Article  Google Scholar 

  • Smith WH, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962

    Google Scholar 

  • Susanto RD, Gordon AL (2005) Velocity and transport of the Makassar Strait throughflow. J Geophys Res 110:C01005. doi:10.1029/2004JC002425

    Article  Google Scholar 

  • Susanto RD, Gordon AL, Sprintall J, Herunadi B (2000) Intraseasonal variability and tides in Makassar Strait. Geophy Res Lett 27:1499–1502

    Article  Google Scholar 

  • Sutherland BR (2006) Internal wave instability: wave–wave versus wave-induced mean flow interactions. Phys Fluids 18:974107

    Article  Google Scholar 

  • Tennenkes H, Lumley JL (1972) A first course in turbulence. MIT, Cambridge, 300 pp

    Google Scholar 

  • Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction. Elsevier, Oxford, p 391

    Google Scholar 

  • Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence. J Mar Res 61:235–265

    Article  Google Scholar 

  • Van Aken H, Punjanan MJ, Saimima S (1988) Physical aspects of the flushing of the east Indonesian basins. Netherlands J Sea Res 22:315–339

    Article  Google Scholar 

  • Warner JC, Sherwood CR, Arango HG, Butman B, Signell RP (2005) Performance of four turbulence closure methods implemented using a generic length scale method. Ocean Model 8:81–113

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work has been provided by ONR through grant N00014-03-1-0423.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Robertson.

Additional information

Responsible Editor: Anthony C. Hirst

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, R. Interactions between tides and other frequencies in the Indonesian seas. Ocean Dynamics 61, 69–88 (2011). https://doi.org/10.1007/s10236-010-0343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0343-x

Keywords

Navigation