Skip to main content

Simulation of tides in hydrocarbon lakes on Saturn’s moon Titan

Abstract

Numerous hydrocarbon lakes have recently been detected on Saturn’s largest moon Titan, representing the only known large bodies of liquids on a planetary surface outside the Earth. In the context of comparative oceanography, tides and tidal currents in two representative lakes on Titan (Kraken Mare and Ontario Lacus) are simulated by a three-dimensional baroclinic ocean circulation model. Since the tide-generating force on Titan is an order of magnitude larger than on Earth and the gravitational acceleration is small, tides and currents are substantially larger than in Earth’s lakes and are more comparable with those in Earth’s oceans. The predicted maximum tidal range in Kraken Mare is 4 m. The tidal wave propagates around the basin of Kraken Mare, while a nearly standing tidal wave is excited in Ontario Lacus. Titan’s rotation is too slow to affect the tidal flow in any Titan’s lake. The tidal current velocity in Kraken Mare amounts to a few centimeters per second except in the vicinity of a narrow strait, where it is enhanced by an order of magnitude. In summer, when the lake is stratified, internal tides can develop. Seiches cannot be caused by tide. In the largest lakes, atmospheric tide may cause additional lake surface displacements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Aharonson O, Hayes AG, Lunine JI, Lorenz RD, Allison MD, Elachi C (2009) An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nature Geosci 2:851–854

    Article  Google Scholar 

  • Barnes JW, et al (2009) Shoreline features of Titan’s Ontario Lacus from Cassini/VIMS observations. Icarus 209:217–225

    Article  Google Scholar 

  • Berntsen J (2004) User’s guide for a modesplit σ-coordinate numerical ocean model. University of Bergen, Norway. Available at http://math.uib.no/BOM/BOM-4.1-guide.pdf

  • Berntsen J, Skogen MD, Espelid TO (1996) Description of a σ-coordinate ocean model. Techn. Report Fisken og Havet No 12, Institute of Marine Research, Bergen, Norway

  • Brown RH, Soderblom SL, Soderblom JM, Clark RN, Jaumann R, Barnes JW, Sotin C, Buratti B, Baines KH, Nicholson PD (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454:607–610

    Article  Google Scholar 

  • Cordier D, Mousis O, Lunine JI, Lavvas P, Vuitton V (2009) An estimate of the chemical composition of Titan’s lakes. Astrophys J 707:L128–L131

    Article  Google Scholar 

  • Defant A (1961) Physical oceanography. Pergamon, Oxford

    Google Scholar 

  • Dermott SF, Sagan C (1995) Tidal effects of disconnected hydrocarbon seas on Titan. Nature 374:238–240

    Article  Google Scholar 

  • Dubouloz N, Raulin F, Lellouch E, Gautier D (1989) Titan’s hypothesized ocean properties: the influence of surface temperature and atmospheric composition uncertainties. Icarus 82:81–96

    Article  Google Scholar 

  • Fulchignoni M, et al (2005) In situ measurements of the physical characteristics of Titan’s environment. Nature 438:785–791

    Article  Google Scholar 

  • Garrett C (2003) Internal tides and ocean mixing. Science 301:1858–1859

    Google Scholar 

  • Ghafoor NAL, Zarnecki JC, Challenor P, Srokosz MA (2000) Wind-driven surface waves on Titan. J Geophys Res 105(E5):12077–12091

    Article  Google Scholar 

  • Hagermann A, Zarnecki JC, Towner MC, Rosenberg PD, Lorenz RD, Leese MR, Hathi B, Ball AJ (2005) Physical properties as indicators of liquid compositions: derivation of the composition for Titan’s surface liquids from the Huygens SSP measurements. Mon Not R Astron Soc 359:637–642

    Article  Google Scholar 

  • Hamblin PF (1976) A theory of short period tides in a rotating basin. Philos Trans R Soc A 281:97–111

    Article  Google Scholar 

  • Hamblin PF, Mühleisen R, Bösenberg U (1977) The astronomical tides of Lake Constance. Dtsch Hydrogr Z 30:105–116

    Article  Google Scholar 

  • Hayes A, et al (2008) Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith. Geophys Res Lett 35:L09204. doi:10.1029/2008GL033409

    Article  Google Scholar 

  • Imberger J, Hamblin PF (1982) Dynamics of lakes, reservoirs, and cooling ponds. Annu Rev Fluid Mech 14:153–187

    Article  Google Scholar 

  • Lorenz, RD (1994) Crater lakes on Titan: rings, horseshoes and bullseyes. Planet Space Sci 42:1–4

    Article  Google Scholar 

  • Lorenz RD, et al (2008) Titan’s inventory of organic surface materials. Geophys Res Lett 35:L02206. doi:10.1029/2007GL032118

    Article  Google Scholar 

  • Lorenz RD, Newman C, Lunine JI (2010) Threshold of wave generation on Titan’s lakes and seas: effect of viscosity and implications for Cassini observations. Icarus. doi:10.1016/j.icarus.2009.12.004

    Google Scholar 

  • Mortimer CH, Fee EJ (1976) Free surface oscillations and tides of Lakes Michigan and Superior. Philos Trans R Soc A 281:1–61

    Article  Google Scholar 

  • Ori GG, Marinangeli L, Baliva A, Bressan M, Storm RG (1998) Fluid dynamics of liquids on Titan’s surface. Planet Space Sci 46:1417–1421

    Article  Google Scholar 

  • Rao DB, Schwab DJ (1976) Two dimensional normal modes in arbitrary enclosed basins on a rotating earth: application to Lakes Ontario and Superior. Philos Trans R Soc Lond A 281:63–96

    Article  Google Scholar 

  • Sagan C, Dermott SF (1982) The tide in the seas of Titan. Nature 300:731–733

    Article  Google Scholar 

  • Sears WD (1995) Tidal dissipation in oceans on Titan. Icarus 113:39–56

    Article  Google Scholar 

  • Stiles BW, et al (2008) Determining Titan’s spin state from Cassini radar images. Astron J 135:1669–1680

    Article  Google Scholar 

  • Stofan ER, et al (2007) The lakes of Titan. Nature 445:61–64

    Article  Google Scholar 

  • Tokano T (2005) Thermal structure of putative hydrocarbon lakes on Titan. Adv Space Res 36:286–294

    Article  Google Scholar 

  • Tokano T (2008) Dune-forming winds on Titan and the influence of topography. Icarus 194:243–262

    Article  Google Scholar 

  • Tokano T (2009a) Limnological structure of Titan’s hydrocarbon lakes and its astrobiological implication. Astrobiology 9:147–164

    Article  Google Scholar 

  • Tokano T (2009b) Impact of polar lakes/seas on polar meteorology of Titan: simulation by a coupled GCM-sea model. Icarus 204:619–636

    Article  Google Scholar 

  • Tokano T, Neubauer FM (2002) Tidal winds on Titan caused by Saturn. Icarus 158:499–515

    Article  Google Scholar 

  • Turtle EP, Perry JE, McEwen AS, Del Genio AD, Barbara J, West RA, Dawson DD, Porco CC (2009) Cassini imaging observations of Titan’s high-latitude lakes, clouds, and south-polar surface changes. Geophys Res Lett 36:L02204. doi:10.1029/2008GL03618

    Article  Google Scholar 

  • Tyler RH (2008) Strong ocean tidal flow and heating on moons of the outer planets. Nature 456:770-772

    Article  Google Scholar 

  • Tyler RH (2009) Ocean tides heat Enceladus. Geophys Res Lett 36:L15205. doi:10.1029/2009GL038300

    Article  Google Scholar 

  • Vallis GK (2006) Atmospheric and oceanic fluid dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wye LC, Zebker HA, Lorenz RD (2009) Smoothness of Titan’s Ontario Lacus: constraint from Cassini RADAR specular reflection data. Geophys Res Lett 36:L16201. doi:10.1029/2009GL039588

    Article  Google Scholar 

  • Zahel W (1977) A global hydrodynamic-numerical 1°-model of the ocean-tide: the oscillation system of the M2-tide and its distribution of energy dissipation. Ann Geophys 33:31–40

    Google Scholar 

Download references

Acknowledgements

This study was supported by DFG. The author made use of the Bergen Ocean Model (BOM) developed at the Institute of Marine Research and the University of Bergen, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Tokano.

Additional information

Responsible Editor: Dirk Olbers

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tokano, T. Simulation of tides in hydrocarbon lakes on Saturn’s moon Titan. Ocean Dynamics 60, 803–817 (2010). https://doi.org/10.1007/s10236-010-0285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0285-3

Keywords

  • Tides
  • Extraterrestrial lake
  • Titan