Skip to main content
Log in

A scaling law of internal run-up duration

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Wave tank experiments with long internal waves of elevation, of different initial length l, moving in a two-fluid system, interacting with a weak slope of 0.045 rad, show an onshore flow of the dense water, at the undisturbed pycnocline-slope intersection, of duration \(11.3\sqrt{l/g'}\) (g′ reduced gravity). This period corresponds to that of a strong bottom current event measured in the stratified ocean at the Ormen Lange gas field, at 850 m depth, lasting for 24 hrs, corresponding to \(11.2\sqrt{l/g'}\), using the width l = 300 km of the Norwegian Atlantic Current (NAC) at the site as length scale, suggesting a lateral sloshing motion of the NAC causing the event. The onshore velocity of the dense fluid has a maximal velocity of \(0.4\sqrt{g'h_2}\) in laboratory and 0.5 ms\(^{-1}=0.3\sqrt{g'h_2}\) in the field (h 2 mixed upper layer thickness). Run-up of the dense fluid, beyond the undisturbed pycnocline-slope intersection, has initially a front velocity of \(0.35\sqrt{g'h_2}\), corresponding to the velocity of the head of a density current on a flat bottom. Due to disintegration, an initially depressed pycnocline results in comparatively smaller run-up and velocity. While moving past the turning point, a dispersive wave train is formed in the back part of the depression wave, developing by breaking into a sequence of up to eight boluses moving by the undisturbed pycnocline-slope intersection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aldridge JN, Davies AM (1993) A high-resolution three-dimensional hydrodynamic tidal model of the Eastern Irish Sea. J Phys Oceanogr 23:207–224

    Article  Google Scholar 

  • Alendal G, Berntsen J, Engum E, Furnes GK, Kleiven G, Eide LI (2005) Influence from ’Ocean Weather’ on near seabed currents and events at Ormen Lange. Mar Pet Geol 2:21–31

    Article  Google Scholar 

  • Benjamin TB (1968) Gravity currents and related phenomena. J Fluid Mech 31:209–248

    Article  Google Scholar 

  • Berntsen J, Furnes G (2005) Internal pressure errors in sigma-coordinate ocean models - sensitivity of the growth of the flow to the time stepping method and possible non-hydrostatic effects. Cont Shelf Res 25:829–848

    Article  Google Scholar 

  • Boegman L, Ivey GN, Imberger J (2005) The energetics of large-scale internal wave degeneration in lakes. J Fluid Mech 531:159–180

    Article  Google Scholar 

  • Britter RE, Linden PF (1980) The motion of the front of a gravity current travelling down an incline. J Fluid Mech 99(3):531–543

    Article  Google Scholar 

  • Cacchione DA, Southard JB (1974) Incipient sediment movement by shoaling internal gravity waves. J Geophys Res 79:2237–42

    Article  Google Scholar 

  • Colosi JA, Beardsley RC, Lynch JF, Gawarkiewicz G, Chjiu C-S, Scotti A (2001) Observations of nonlinear internal waves on the outer New England continental shelf during the summer Shelfbreak Primer study. J Geophys Res 106(C5):9587–9601

    Article  Google Scholar 

  • Davies AM, Aldridge JN (1993) A numerical model study of parameters influencing tidal currents in the Irish Sea. J Geophys Res 98(C4):7049–7067

    Article  Google Scholar 

  • Davies AM, Xing J, Gjevik B (2003) Barotropic eddy generation by flow instability at the shelf edge: sensitivity to open boundary conditions, inflow and diffusion. J Geophys Res 108(2):17-1–17-15

    Article  Google Scholar 

  • Djordjevic VD, Redekopp LG (1978) The fission and disintegration of internal waves moving over two-dimensional topography. J Phys Oceanogr 8:1016–1090

    Article  Google Scholar 

  • Farmer DM (1978) Observations of long nonlinear internal waves in a lake. J Phys Oceanogr 8:63–73

    Article  Google Scholar 

  • Gjevik B, Nøst E, Straume T (1990) Atlas of the tides on the shelves of the Norwegian and the Barents Seas”. Report FoU-ST 90012 Statoil, Stavanger, Norway

  • Gjevik B, Moe H, Ommundsen A (2002) Idealized model simulations of barotropic flow on the Catalan shelf. Cont Shelf Res 22:173–198

    Article  Google Scholar 

  • Gonzalez-Juez E, Meiburg E (2009) Shallow-water analysis of gravity current flow past isolated obstacles. J Fluid Mech 635:415–438

    Article  Google Scholar 

  • Gould WJ, Loynes J, Backhaus J (1985) Seasonality in slope current transport N. W. of Shetland. ICES Stat. Meeting 1985, C. M. 1985/C.7

  • Grimshaw R, Pelinosky EN, Talipova T (1998) Solitary wave tranformation due to a change in polarity. Stud Appl Math 101:357

    Article  Google Scholar 

  • Grue J, Jensen A Rusås P-O, Sveen JK (1999) Properties of large amplitude internal waves. J Fluid Mech 380:257–278

    Article  Google Scholar 

  • Grue J, Pelinovsky EN, Fructus D, Talipova T, Kharif Ch (2008) Formation of undular bores and solitary waves in the Strait of Malacca caused by the 26 December 2004 Indian Ocean tsunami. J Geophys Res 113:C05008. doi:10.1029/2007JC004343

    Article  Google Scholar 

  • Hansen B, Østerhus S, Dooley HD, Gould WJ, Richards LJ (1998) North Atlantic-Norwegian sea exchanges. The ICES NANSEN Project. ICES Coop. Res. Rep. No. 225

  • Helfrich KR (1992) Internal solitary waves breaking and run-up on a uniform slope. J Fluid Mech 243:133–154

    Article  Google Scholar 

  • Helfrich KR, Melville WK, Miles JW (1984) On interfacial solitary waves over slowly varying topography. J Fluid Mech 149:305–317

    Article  Google Scholar 

  • Holloway PE (1987) Internal hydraulic jumps and solitons at the shelf break region on the Australian North West Shelf. J Geophys Res 92(C5):5405–5416

    Article  Google Scholar 

  • Horn DA, Imberger J, Ivey GN (2001) The degeneration of large-scale interfacial gravity waves in lakes. J Fluid Mech 434:181–207

    Article  Google Scholar 

  • Hosegood P, van Haren H (2004) Near-bed solibores over the continental slope in the Faeroe-Shetland Channel. Deep-Sea Res. II 51:2943–71

    Article  Google Scholar 

  • Johnson RS (1973) On an asymptotic solution of the Korteweg-de Vries equation with slowly varying coefficients. J Fluid Mech 60:813–824

    Article  Google Scholar 

  • Johnson D, Weidemann A, Scott Pegau W (2001) Internal tidal bores and bottom nepheloid layers. Cont Shelf Res 21:1473–1484

    Article  Google Scholar 

  • Kabbaj A (1985) Contibution à l’étude du passage des ondes de gravité sur le talus continental et à la gènèration des ondes internes. PhD thesis Ètat, Univ. Sci. Mèd. Grenoble

  • Kabbaj A, Zhang X (1988) Passage d’une onde interne solitaire sur un seuil d’après le modèles analytiques de Djordjevic-Redekoppe et de Kabbaj. Oceanol Acta 11:315

    Google Scholar 

  • Kao TW, Pan F-S, Renouard D (1985) Internal solitons on the pycnocline: generation, propagation, and shoaling and breaking over a slope. J Fluid Mech 159:19–53

    Article  Google Scholar 

  • Klymak JM, Moum JN (2003) Internal solitary waves of elevation advancing on a shoaling shelf. Geophys Res Lett 30(20):2045. doi:10.1029/2003GL017706

    Article  Google Scholar 

  • Knickerbocker CJ, Newell AC (1980) Internal solitary waves near a turning point. Phys Lett A 75:326

    Article  Google Scholar 

  • Malomed B, Shrira V (1991) Soliton caustics. Physica D 53:1

    Article  Google Scholar 

  • Mauritzen C (1996) Production of dense overflow water feeding the North Atlantic across the Greenland-Scotland Ridge. Deep-Sea Res I 43(6):769–806

    Article  Google Scholar 

  • Michallet H, Ivey GN (1999) Experiments on mixing due to internal solitary waves breaking on uniform slopes. J Geophys Res 104(13):467–477

    Google Scholar 

  • Monaghan JJ, Merieux C, Huppert HE, Mansour J (2009) Particluate gravity currents along V-shaped valleys. J Fluid Mech 631:419–440

    Article  Google Scholar 

  • Monin AS (1990) Theoretical geophysical fluid dynamics. Translated by R. Hardin. Kluwer Ac. Publ., 400 pp

  • Ono H (1972) Wave propagation in an inhomogeneous and harmonic lattice. J Phys Soc Japan 32:332–336

    Article  Google Scholar 

  • Orvik KA, Skagseth Ø, Mork M (2001) Atlantic inflow to the Nordic Seas: current structure and volume fluxes from moored current meters, VM-ADCP and SeaSoar-CTD observations, 1995–1999. Deep-Sea Res I 48:937–957

    Article  Google Scholar 

  • Renouard DP, Seabra Santros FJ, Zhang X (1987) Étude expérimentale dy passage d’une onde solitaire au-dessus d’un seuil. Oceanol Acta 10:256

    Google Scholar 

  • Simpson JE (1997) Gravity currents in the environment and the laboratory, 2nd edn. Camb. Univ. Press, 244 pp

  • Simpson JE, Britter RE (1979) The dynamics of the head of a gravity current advancing over a horizontal surface. J Fluid Mech 94(3):477–495

    Article  Google Scholar 

  • Sveen JK (2004) An introduction to matpiv v.1.6.1, E-print no 2, ISSN 0809-4403, Dept. of Mathematics, University of Oslo, http://www.math.uio.no/~jks/matpiv

  • Sveen JK, Guo Y, Davies PA, Grue J (2002) On the breaking of internal solitary waves at a ridge. J Fluid Mech 469:161–188

    Article  Google Scholar 

  • Thiem Ø, Berntsen J (2006) Internal pressure errors in sigma-coordinate ocean models due to anisotropy. Ocean Model 12:140–156

    Article  Google Scholar 

  • Thiem Ø, Berntsen J (2009) Numerical studies of large-amplitude internal waves shoaling and breaking at shelf slopes. Ocean Dyn 59:937–952. doi:10.1007/s10236-009-0220-7

    Article  Google Scholar 

  • Vikebø F, Berntsen J, Furnes GK (2004) Numerical studies of the current response at Ormen Lange to a travelling storm. J Mar Syst 45:205–220

    Article  Google Scholar 

  • Wallace BC, Wilkinson DL (1988) Run-up of internal waves on a gentle slope in a two-layered system. J Fluid Mech 191:419–442

    Article  Google Scholar 

Download references

Acknowledgements

It is a great pleasure to thank Professor Bjørn Gjevik for his enthusiastic support over many years, particularly with the planning and performance of two larger Strategic University Programs in the research group in the Mechanics Division at the University of Oslo, one also including research groups at the University of Bergen and NTNU. Professor Gjevik has always attracted many students, and we liked his lectures, how he communicated the subject and the requirements he posed in the excercises and for the examinations! The technical assistance by Svein Vesterby and Arve Kvalheim with preparing the experimental set-up is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Grue.

Additional information

Responsible Editor: Alan M. Davies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grue, J., Sveen, J.K. A scaling law of internal run-up duration. Ocean Dynamics 60, 993–1006 (2010). https://doi.org/10.1007/s10236-010-0284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0284-4

Keywords

Navigation