Skip to main content

Simulating CO2 transport into the ocean from a CO2 lake at the seafloor using a z- and a σ-coordinate model

Abstract

The ocean takes up approximately 2 GT carbon per year due to the enhanced CO2 concentrations in the atmosphere. Several options have been suggested in order to reduce the emissions of CO2 into the atmosphere, and among these are CO2 storage in the deep ocean. Topographic effects of dissolution and transport from a CO2 lake located at 3,000-m depth have been studied using the z-coordinate model Massachusetts Institute of Technology general circulation model (MITgcm) and the σ-coordinate model Bergen ocean model (BOM). Both models have been coupled with the general ocean turbulence model (GOTM) in order to account for vertical subgrid processes. The chosen vertical turbulence mixing scheme includes the damping effect from stable stratification on the turbulence intensity. Three different topographic scenarios are presented: a flat bottom and the CO2 lake placed within a trench with depths of 10 and 20 m. The flat case scenario gives good correlation with previous numerical studies of dissolution from a CO2 lake. When topography is introduced, it is shown that the z-coordinate model and the σ-coordinate model give different circulation patterns in the trench. This leads to different dissolution rates, 0.1 μmol cm − 2 s − 1 for the scenario of a 20-m-deep trench using BOM and 0.005–0.02 μmol cm − 2 s − 1 for the same scenario using the MITgcm. The study is also relevant for leakages of CO2 stored in geological formations and to the ocean.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Adams EE, Caulfield JA, Herzog HJ, Auerbach DI (1997) Impacts of reduced pH from ocean CO2 disposal: sensitivity of zooplankton mortality to model parameters. Waste Manage 17(5/6):375–380

    Google Scholar 

  • Adcroft A, Campin JM, Dutkiewicz S, Evangelinos C, Ferreira D, Forget G, Fox-Kemper B, Heimbach P, Hill C, Hill E, Hill H, Jahn O, Losch M, Marshall J, Maze G, Menemenlis D, Molod A (2008) MITgcm user manual. MIT Department of EAPS, Cambridge

    Google Scholar 

  • Archer D (2005) Fate of fossil fuel CO2 in geologic time. J Geophys Res 110:(C09S05)

  • Archer D, Brovkin V (2008) The millennial atmospheric lifetime of anthropogenic CO2. Clim Change (90):283–297

  • Auerbach DI, Caulfield JA, Adams EE, Herzog HJ (1997) Impacts of ocean CO2 disposal on marine life. In: a toxicological assessment integrating constant-concentration laboratory assay data with variable-concentration field exposure. Environ Model Assess 2

  • Bao F, Dallmann UC (2004) Some physical aspects of separation bubble on a rounded backward-facing step. Aerosp Sci Technol (8):83–91

  • Barry JP, Buck KR, Lovera C, Kuhnz L, Whaling PJ (2005) Utility of deep sea CO2 release experiments in understanding the biology of a high-CO2 ocean: Effects of hypercapnia on deep sea meiofauna. J Geophys Res 110:(C09S12)

  • Barry JP, Buck KR, Lovera CF, Kuhnz L, Whaling PJ, Peltzer ET, Walz P, Brewer PG (2004) Effects of direct ocean CO2 injection on deep-sea meiofauna. J Oceanogr 60:759–766

    Article  Google Scholar 

  • Bates NR, Peters AJ (2007) The contribution of atmospheric acid deposition to ocean acidification in the subtropical North Atlantic Ocean. Mar Chem 107:547–558

    Article  Google Scholar 

  • Berntsen, J., 2002. Internal pressure errors in sigma-coordinate ocean models. J Atmos Ocean Technol 19(9):1403–1414

    Article  Google Scholar 

  • Berntsen J (2004) USERS GUIDE for a modesplit σ-coordinate numerical ocean model. Tech. Rep. 4.1, University of Bergen, Johs. Bruns gt. 12, N-5008 BERGEN

  • Berntsen J, Xing J, Alendal G (2006) Assessment of non-hydrostatic ocean models using laboratory scale problems. Cont Shelf Res 26(12-13):1433–1447

    Article  Google Scholar 

  • Berntsen J, Xing J, Davies AM (2009) Numerical studies of flow over a sill: sensitivity of the non-hydrostatic effects to the grid size. Ocean Dyn (Submitted to Ocean Dynamics)

  • Brewer PG, Friederich G, Peltzer ET, Orr FM Jr (1999) Direct experiments on the ocean disposal of fossil fuel CO2. Science 284:943–945

    Article  Google Scholar 

  • Brewer PG, Peltzer E, Aya I, Haugan P, Bellerby R, Yamane K, Kojima R, Walz P, Nakajima Y (2004) Small scale field study of an ocean CO2 plume. J Oceanogr 60:751–758

    Article  Google Scholar 

  • Brewer PG, Peltzer ET, Walz P, Aya I, Yamane K, Kojima R, Nakajima Y, Haugan PM, Johannesen T (2005) Deep ocean experiments with fossil fuel carbon dioxide: Creation and sensing of a controlled plume at 4 km depth. J Mar Res 63:9–22

    Article  Google Scholar 

  • Buchard H (2002)) Applied turbulence modeling in marine waters. Springer, Berlin

    Google Scholar 

  • Caldeira K, Wickett M E (2003) Antropogenic carbon and ocean pH. Nature 425(6956):365–365

    Article  Google Scholar 

  • Chow AC, Adams EE, Israelsson PH, Tsouris C (2008) Carbon dioxide hydrate particles for ocean carbon sequestration. Proceedings from GHGT-9, Energy Proceedia

  • Cicerone R, Orr J, Brewer P, Haugan P, Merlivat L, Ohsumi T, Pantojua S, Poertner H-O, Hood M, Urban E (2004) The ocean in a high-CO2 world. Oceanography 17(3):72–78

    Google Scholar 

  • Drange H, Haugan PM (1992) A feasibility study of dissolution and sequestration of CO2 in the ocean. Tech. Rep. 54, Nansen Environment and Remote Sensing Centre, Bergen

  • Enstad LI, Haugan PM, Alendal G (2006) Dissolution of CO2 from the sea-floor to oceanic waters. In: Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies

  • Enstad LI, Rygg K, Haugan PM, Alendal G (2008) Dissolution of a CO2lake, modeled by using an advanced vertical turbulence mixing scheme. Int J Greenh Gas Control 2(4):511–519

    Article  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. International Council for the Exploration of the Sea. J Mar Sci 65(3):414–432

    Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ. Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  Google Scholar 

  • Fer I, Haugan PM (2003) Dissolution from a liquid CO2 lake disposed in the deep ocean. Limnol Oceanogr 48(2):872–883

    Article  Google Scholar 

  • Haugan PM, Drange H (1992) Sequestration of CO2 in the deep ocean by shallow injection. Lett Nat 357:318–320

    Article  Google Scholar 

  • Haugan PM, Alendal G (2005) Turbulent diffusion and transport from a CO2 lake in the deep ocean. J Geophys Res 110:C09S14

    Google Scholar 

  • Herzog HJ, Caldeira K, Adams E (2000) Carbon sequestration via direct injection. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopaedia of ocean sciences. Academic, London

    Google Scholar 

  • Hester KC, Peltzer ET, Kirkwood WJ, Brewer PG (2008) Unanticipated consequences of ocean acidification: A noisier ocean at lower pH. Geophys Res Lett 35(L19601)

  • House KZ, Schrag DP (2008) The immobility of CO2 in deepsea sediments. In: Proceedings of GHGT-9, Energy Procedia

  • Hove J, Haugan PM (2005) Dynamics of CO2-seawater interface in the deep ocean. J Mar Res 63:563–577

    Article  Google Scholar 

  • IPCC (2005) Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (Eds.) Special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. http://www.ipcc.ch/activity/srccs/index.htm

    Google Scholar 

  • Kobayashi Y (1995) Physical behavior of liquid CO2 in the ocean. Direct Ocean Disposal of Carbon Dioxide 165–181

  • Kundu PK, Cohen IM (2004) Fluid Mechanics, 3rd Edition. Elsevier Academic, Amsterdam

    Google Scholar 

  • Kurihara H, Shimode S, Shirayama Y (2004) Effects of raised CO2 concentration the egg production rate and early development of two marine copecods (Acartia steueri and Acartia erythraea). Mar Pollut Bull 49:721–727

    Article  Google Scholar 

  • Manzan M, Comini G (1994) Inflow and outflow boundary conditions in the finite element solution of the streamfunction—vorticity equations. Commun Numer Methods Eng 11:33–40

    Article  Google Scholar 

  • Marchetti C (1977) On geoengineering and the CO2 problem. Clim Change 1:59–68

    Article  Google Scholar 

  • Marshall J, Hill C, Perelman L, Adcroft A (1997) Hydrostatic, quasi–hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102(C3):5733–5752

    Article  Google Scholar 

  • Mellor GL, Blumberg AF (1985) Modeling vertical and horizontal diffusivities with the sigma coordinate system. Mon Weather Rev 113:1379–1383

    Article  Google Scholar 

  • Mori Y, Mochizuki T (1997) Mass transport across clathrate hydrate films—a capillary permeation model. Chem Eng Sci 52:3613–3616

    Article  Google Scholar 

  • Mori YH (1998) Clathrate hydrate formation at the interface between liquid CO2 and water phases—a review of rival models charaterizing ‘hydrate films’. Energy Convers Manag 39:1537–1557

    Article  Google Scholar 

  • Nakashiki N (1997) Lake-type storage concepts for CO2 disposal option. Waste Manage 17(5/6):361–367

    Google Scholar 

  • Neumann J, Wengle H (2004) Coherent structures in controlled separated flow over sharp-edged and rounded steps. J Turbul 5(N22)

  • Pacala S, Socolow R (2004) Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  Google Scholar 

  • Peltzer ET, Brewer PG, Dunk RM, Fuchs MP, Walz PM (2006) Deep ocean CO2 hydration kinetics. AGU/ASLO Ocean Sciences Meeting Poster

  • Rani HP, Sheu TWH, Tsai ESF (2007) Eddy structures in a transitional backward-facing step flow. J Fluid Mech 588:43–58

    Article  Google Scholar 

  • Roe P (1985) Some contributions to the modelling of discontinuous flows. In: Large-scale computations in fluid mechanics. Vol. 22 of Lectures in Applied Mathematics. American Mathematical Society, Providence, pp 163–193

    Google Scholar 

  • Rygg K, Enstad LI, Alendal G, Haugan PM (2008) Topographic effects on CO2, diffusion and dissolution from the seafloor. In: Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies, Energy Proceedia

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  Google Scholar 

  • Santana-Casiano JM, González-Dávila M, Rueda MJ, Llinás O, Gonzáles-Dávila, S-F, (2007) The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site. Global Biochemical Cycles 21 (GB1015)

  • Sato T (2004) Numerical simulation of biological impact caused by direct injection of carbon dioxide in the ocean. J Oceanogr 60:807–816

    Article  Google Scholar 

  • Sheps KM, Max MD, Osegovic JP, SR Tatro LAB (2008) A case for deep-ocean CO2 sequestration. In: Proceedings of GHGT-9, Energy Proceedia

  • Tamburri MN, Peltzer ET, Friederich GE, Aya I, Yamane K, Brewer PG (2000) A field study of the effects of CO2 ocean disposal on mobile deep-sea animals. Mar Chem 72:95–101

    Article  Google Scholar 

  • Vetter EW, Smith CR (2005) Insights into the ecological effects of deep ocean CO2 enrichment: The impacts of natural CO2 venting at Loihi seamount on deep sea scavengers. J Geophys Res 110(C09S13)

  • Zängl G (2002) An improved method for computing horizontal diffusion in a sigma-coordinate model and it’s application to simulations over mountainous topography. Mon Weather Rev (130):1423–1432

Download references

Acknowledgements

This study has been funded by the EU-IP CARBOOCEAN (511176-2) project. Also, we thank E. Eric Adams from the Massachusetts Institute of Technology for useful suggestions during the poster session at GHGT-9 in Washington 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Rygg.

Additional information

Responsible Editor: Phil Dyke

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rygg, K., Enstad, L.I. & Alendal, G. Simulating CO2 transport into the ocean from a CO2 lake at the seafloor using a z- and a σ-coordinate model. Ocean Dynamics 59, 795–808 (2009). https://doi.org/10.1007/s10236-009-0211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-009-0211-8

Keywords

  • Ocean storage
  • CO2
  • MITgcm
  • BOM
  • GOTM
  • Turbulence
  • Dissolution
  • Topography