Skip to main content
Log in

Trace metal dynamics in the water column and pore waters in a temperate tidal system: response to the fate of algae-derived organic matter

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Tidal and seasonal behaviour of the redox-sensitive trace metals Mn, Fe, Mo, U, and V have been investigated in the open-water column and shallow pore waters of the backbarrier tidal flats of the island of Spiekeroog (Southern North Sea) in 2002 and 2007. The purpose was to study the response of trace metal cycles on algae blooms, which are assumed to cause significant changes in the redox state of the entire ecosystem. Trace metal data were complemented by measurements of nutrients and enumeration of algae cells in 2007. Generally, Mn and V show a tidal cyclicity in the water column with maximum values during low tide which is most pronounced in summer due to elevated microbial activity in the sediments. Mo and U behave almost conservatively throughout the year with slightly increasing levels towards high tide. Exceptions are observed for both metals after summer algae blooms. Thus, the seasonal behaviour of the trace metals appear to be significantly influenced by productivity in the water column as the occurrence of algae blooms is associated with an intense release of organic matter (e.g. transparent exopolymer particles, TEP) thereby forming larger organic-rich aggregates. Along with elevated temperatures in summer, the deposition of such aggregates favours microbial activity within the surface sediments and release of DOC, nutrients and trace metals (Mn, Mo and V) during the degradation of the aggregates. Additionally, pronounced reducing conditions lead to the reduction of Mn(IV)-oxides and Fe(III)-(oxihydr)oxides, thereby releasing formerly scavenged compounds as V and phosphate. Therefore, pore-water profiles show significant enrichments in trace metals especially from July to September. Finally, the trace metals are released to the open water column via draining pore waters (esp. Mo, Mn, and V) and/or fixed in the sediment as sulphides (Fe, Mo) and bound to organic matter (U). Non-conservative behaviour of Mo in oxygenated seawater, first observed in the investigation area by Dellwig et al. (Geochim Cosmochim Acta 71:2745–2761, 2007a), was shown to be a recurrent phenomenon which is closely coupled to bacterial activity after the breakdown of algae blooms. In addition to the postulated fixation of Mo in oxygen-depleted micro-zones of the aggregates or by freshly formed organic matter, a direct removal of Mo from the water column by reduced sediment surfaces may also play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Algeo TJ (2006) Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21:PA1016. doi:10.1029/2004PA001112

    Article  Google Scholar 

  • Al-Raei AM, Bosselmann K, Böttcher ME, Hespenheide B, Tauber F (2009) Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn (in press).

  • Anbar AD, Holland HD (1992) The photochemistry of manganese and the origin of banded iron formation. Geochim Cosmochim Acta 56:2595–2603. doi:10.1016/0016-7037(92) 90346-K

    Article  Google Scholar 

  • Balistrieri L, Brewer PG, Murray JW (1981) Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep-Sea Res 28A:101–121. doi:10.1016/0198-0149(81) 90085-6

    Article  Google Scholar 

  • Barling J, Anbar AD (2003) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett 217(3–4):315–329. doi:10.1016/S0012-821X(03) 00608-3

    Google Scholar 

  • Beck M, Dellwig O, Kolditz K, Freund H, Liebezeit G, Schnetger B, Brumsack H-J (2007) In situ pore water sampling in deep intertidal flat sediments. Limnol Oceanogr Methods 5:136–144

    Google Scholar 

  • Beck M, Dellwig O, Schnetger B, Brumsack H-J (2008a) Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments. Geochim Cosmochim Acta 72:2822–2840. doi:10.1016/j.gca.2008.04.013

    Article  Google Scholar 

  • Beck M, Dellwig O, Liebezeit G, Schnetger B, Brumsack H-J (2008b) Spatial and seasonal variations of sulphate, dissolved organic carbon, and nutrients in deep pore waters of intertidal flat sediments. Estuar Coast Shelf Sci 79(2):307–316. doi:10.1016/j.ecss.2008.04.007

    Article  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615. doi:10.1016/0016-7037(84) 90089-9

    Article  Google Scholar 

  • Berrang PG, Grill EV (1974) The effect of manganese oxide scavenging on molybdenum in Saanich Inlet, British Columbia. Mar Chem 2:125–148. doi:10.1016/0304-4203(74) 90033-4

    Article  Google Scholar 

  • Billerbeck M, Werner U, Polerecky L, Walpersdorf E, de Beer D, Huettel M (2006) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326:61–76

    Google Scholar 

  • Böttcher ME, Oelschläger B, Höpner T, Brumsack H-J, Rullkötter J (1998) Sulfate reduction related to the early diagenetic degradation of organic matter and “black spot” formation in tidal sandflats of the German Wadden Sea (southern North Sea): stable isotope (13C, 34S, 18O) and other geochemical results. Org Geochem 29(5–7):1517–1530. doi:10.1016/S0146-6380(98) 00124-7

    Article  Google Scholar 

  • Böttcher ME, Oelschläger B, Höpner T, Brumsack H-J, Rullkötter J (1999) Isotopendiskriminierung (34S/32S, 13C/12C) im Zusammenhang mit dem Auftreten großflächiger anoxischer Sedimentoberflächen im Rückseitenwatt der Insel Baltrum (südliche Nordsee). Zentralblatt für Geologie und Paläontologie, Teil 1 1997:1063–1075

    Google Scholar 

  • Böttcher ME (2003) Schwarze Flecken und Flächen im Wattenmeer. In: Lozán JL, Rachor E, Reise K, Sündermann J, Westernhagen HV (eds) Warnsignale aus der Nordsee & Wattenmeer—Eine aktuelle Umweltbilanz. Wissenschaftliche Auswertungen, Blackwell, Berlin, pp 193–195

    Google Scholar 

  • Bosselmann K, Böttcher ME, Billerbeck M, Walpersdorf E, Theune A, de Beer D, Hüttel M, Brumsack H-J, Jørgensen BB (2003) Iron–sulfur–manganese dynamics in intertidal surface sediments of the North Sea. Ber. Forschungsz. Terramare 12:32–35

    Google Scholar 

  • Bruland KW (1983) Trace elements in seawater. Chem. Oceanogr. 8:157–220

    Google Scholar 

  • Brumsack H-J, Gieskes JM (1983) Interstitial water trace-metal chemistry of laminated sediments from the Gulf of California, Mexico. Mar Chem 14:89–106. doi:10.1016/0304-4203(83) 90072-5

    Article  Google Scholar 

  • Burdige DJ, Nealson KH (1985) Microbial manganese reduction by enrichment cultures from coastal marine sediments. Appl Environ Microbiol 50(2):491–497

    Google Scholar 

  • Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci Rev 35:249–284. doi:10.1016/0012-8252(93) 90040-E

    Article  Google Scholar 

  • Callender E, Bowser CJ (1980) Manganese and copper geochemistry of interstitial fluids from manganese-nodule-rich pelagic sediments of the northeastern equatorial Pacific Ocean. Am J Sci 280:1063–1096

    Google Scholar 

  • Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53:619–632. doi:10.1016/0016-7037(89) 90005-7

    Article  Google Scholar 

  • Canfield DE, Raiswell R, Bottrell S (1992) The reactivity of sedimentary iron minerals toward sulfide. Am J Sci 292:659–683

    Google Scholar 

  • Chang TS, Joerdel O, Flemming BW, Bartholomä A (2006) The role of particle and seasonal sediment turnover in a back-barrier tidal basin, East Frisian Wadden Sea, southern North Sea. Mar Geol 235:49–61. doi:10.1016/j.margeo.2006.10.004

    Article  Google Scholar 

  • Chen MS, Wartel S, Temmerman S (2005) Seasonal variation of floc characteristics on tidal flats, the Scheldt estuary. Hydrobiologia 540:181–195. doi:10.1007/s10750-004-7143-6

    Article  Google Scholar 

  • Cheshire MV, Berrow ML, Goodman BA, Mundie CM (1977) Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochim Cosmochim Acta 41:1131–1138. doi:10.1016/0016-7037(77) 90108-9

    Article  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Google Scholar 

  • Cochran JK, Carey AE, Sholkovitz ER, Surprenant LD (1986) The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters. Geochim Cosmochim Acta 50:663–680. doi:10.1016/0016-7037(86) 90344-3

    Article  Google Scholar 

  • Cole JJ, Howarth RW, Nolan SS, Marino R (1986) Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biogeochemistry 2:179–196. doi:10.1007/BF02180194

    Article  Google Scholar 

  • Cole JJ, Lane JM, Marino R, Howarth RW (1993) Molybdenum assimilation by cyanobacteria and phytoplankton in freshwater and salt water. Limnol Oceanogr 38(1):25–35

    Google Scholar 

  • Collier RW (1985) Molybdenum in the Northeast Pacific Ocean. Limnol Oceanogr 30(6):1351–1354

    Google Scholar 

  • Craig H (1974) A scavenging model of trace elements in the deep sea. Earth Planet Sci Lett 23:149–159. doi:10.1016/0012-821X(74) 90042-9

    Article  Google Scholar 

  • de Beer D, Wenzhöfer F, Ferdelman TG, Boehme SE, Huettel M, van Beusekom JE, Böttcher ME, Musat N, Dubilier N (2005) Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Romo Basin, Wadden Sea. Limnol Oceanogr 50(1):113–127

    Google Scholar 

  • De Jonge VN, Essink K, Boddeke R (1993) The Dutch Wadden Sea—a changed ecosystem. Hydrobiologia 265(1–3):45–71

    Google Scholar 

  • Dellwig O, Beck M, Lemke A, Lunau M, Kolditz K, Schnetger B, Brumsack H-J (2007a) Non-conservative behaviour of molybdenum in coastal waters: coupling geochemical, biological, and sedimentological processes. Geochim Cosmochim Acta 71:2745–2761. doi:10.1016/j.gca.2007.03.014

    Article  Google Scholar 

  • Dellwig O, Bosselmann K, Kölsch S, Hentscher M, Hinrichs J, Böttcher ME, Reuter R, Brumsack H-J (2007b) Sources and fate of manganese in a tidal basin of the German Wadden Sea. J Sea Res 57(1):1–18. doi:10.1016/j.seares.2006.07.006

    Article  Google Scholar 

  • Emerson S, Kalhorn S, Jacobs L, Tebo BM, Nealson KH, Rosson RA (1982) Environmental oxidation rate of manganese(II): bacterial catalysis. Geochim Cosmochim Acta 46:1073–1079. doi:10.1016/0016-7037(82) 90060-6

    Article  Google Scholar 

  • Erickson BE, Helz GR (2000) Molybdenum(VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochim Cosmochim Acta 64(7):1149–1158. doi:10.1016/S0016-7037(99) 00423-8

    Article  Google Scholar 

  • Feely RA, Massoth GJ, Paulson AJ, Gendron JF (1983) Possible evidence for enrichment of trace-elements in the hydrous manganese oxide phases of suspended matter from an urbanized embayment. Estuar Coast Shelf Sci 17:693–708. doi:10.1016/0272-7714(83) 90035-5

    Article  Google Scholar 

  • Franke U, Polerecky L, Precht E, Huettel M (2006) Wave tank study of particulate organic matter degradation in permeable sediments. Limnol Oceanogr 51(2):1084–1096

    Google Scholar 

  • Goldberg ED (1954) Marine geochemistry I. Chemical scavengers of the sea. J Geol 62:249–265

    Article  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis. Wiley, New York, NY

    Book  Google Scholar 

  • Grunwald M, Dellwig O, Liebezeit G, Schnetger B, Reuter R, Brumsack H-J (2007) A novel time-series station in the Wadden Sea (NW Germany: First results on continuous nutrient and methane measurements. Mar Chem 107:411–421. doi:10.1016/j.marchem.2007.04.003

    Article  Google Scholar 

  • Head PC, Burton JD (1970) Molybdenum in some ocean and estuarine waters. J Mar Biol Assoc U K 50:439–448

    Google Scholar 

  • Helz GR, Miller CV, Charnock JM, Mosselmans JFW, Patrick RAD, Garner CD, Vaughan DJ (1996) Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim Cosmochim Acta 60(19):3631–3642. doi:10.1016/0016-7037(96) 00195-0

    Article  Google Scholar 

  • Helz GR, Vorlicek TP, Kahn MD (2004) Molybdenum scavenging by iron monosulfides. Environ Sci Technol 38:4263–4268. doi:10.1021/es034969+

    Article  Google Scholar 

  • Hinrichs J, Dellwig O, Brumsack H-J (2002) Lead in sediments and suspended particulate matter of the German Bight: natural versus anthropogenic origin. Appl Geochem 17:621–632. doi:10.1016/S0883-2927(01) 00124-X

    Article  Google Scholar 

  • Hoffman SJ, Fletcher WK (1981) Organic matter scavenging of copper, zinc, molybdenum, iron and manganese, estimated by a sodium hypochlorite extraction (pH 9.5). J Geochem Explor 15:549–562. doi:10.1016/0375-6742(81) 90086-8

    Article  Google Scholar 

  • Huerta-Diaz MA, Morse JW (1992) Pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702. doi:10.1016/0016-7037(92) 90353-K

    Article  Google Scholar 

  • Huizinga DL, Kester DR (1982) The distribution of vanadium in the Northwestern Atlantic Ocean. EOS 63:990

    Google Scholar 

  • Klinkhammer GP (1980) Early diagenesis in sediments from the eastern equatorial Pacific, II. Pore water metal results. Earth Planet Sci Lett 49:81–101. doi:10.1016/0012-821X(80) 90151-X

    Article  Google Scholar 

  • Klinkhammer GP, Palmer MR (1991) Uranium in the oceans: where it goes and why. Geochim Cosmochim Acta 55:1799–1806. doi:10.1016/0016-7037(91) 90024-Y

    Article  Google Scholar 

  • Klinkhammer GP, Heggie DT, Graham DW (1982) Metal diagenesis in oxic marine sediments. Earth Planet Sci Lett 61:211–219. doi:10.1016/0012-821X(82) 90054-1

    Article  Google Scholar 

  • Kolditz K, Dellwig O, Barkowski J, Beck M, Freund H, Brumsack H-J (2009) Salt marsh restoration: Effects of de-embankment on pore water geochemistry. J Coast Res (in press).

  • Koschinsky A, Winkler A, Fritsche U (2003) Importance of different types of marine particles for the scavenging of heavy metals in the deep-sea bottom water. Appl Geochem 18:693–710. doi:10.1016/S08830-2927(02) 00161-0

    Article  Google Scholar 

  • Krom MD, Berner RA (1980) Adsorption of phosphate in anoxic marine sediments. Limnol Oceanogr 25(5):797–806

    Article  Google Scholar 

  • Ku TL, Knauss KG, Mathieu GG (1977) Uranium in open ocean—concentration and isotopic composition. Deep-Sea Res 24(11):1005–1017. doi:10.1016/0146-6291(77) 90571-9

    Article  Google Scholar 

  • Lovley DR, Phillips EJ, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416. doi:10.1038/350413a0

    Article  Google Scholar 

  • Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993) Enzymatic iron and uranium reduction by sulphate-reducing bacteria. Mar Geol 113:41–53. doi:10.1016/0025-3227(93) 90148-O

    Article  Google Scholar 

  • Lubbers GW, Gieskes WWC, del Castilho P, Salomons W, Bril J (1990) Manganese accumulation in the high pH microenvironment of Phaeocystis sp. (Haptophyceae) colonies from the North Sea. Mar Ecol Prog Ser 59:285–293. doi:10.3354/meps059285

    Article  Google Scholar 

  • Lunau M, Lemke A, Dellwig O, Simon M (2006) Physical and biogeochemical controls of microaggregate dynamics in a tidally affected coastal ecosystem. Limnol Oceanogr 51(2):847–859

    Google Scholar 

  • Luther GWIII, Shellenbarger PA, Brendel PJ (1996) Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters. Geochim Cosmochim Acta 60(6):951–960. doi:10.1016/0016-7037(95) 00444-0

    Article  Google Scholar 

  • Maeda M, Windom HL (1982) Behavior of uranium in 2 estuaries of the southeastern United States. Mar Chem 11(5):427–436. doi:10.1016/0304-4203(82) 90008-1

    Article  Google Scholar 

  • Martens P, Elbrächter M (1997) Zeitliche und räumliche Variabilität der Mikronährstoffe und des Phytoplanktons im Sylt-Rømø Wattenmeer. In: Gätje C, Reise K (eds) Ökosystem Wattenmeer—Austausch-Transport- und Stoffumwandlungsprozesse. Springer, Heidelberg, Berlin, pp 65–79

    Google Scholar 

  • Matthiesen H, Leipe T, Laima MJC (2001) A new experimental setup for studying the formation of phosphate binding iron oxides in marine sediments—preliminary results. Biogeochemistry 52:79–92. doi:10.1023/A:1026570318469

    Article  Google Scholar 

  • McManus J, Nägler TF, Siebert C, Wheat CG, Hammond DE (2002) Oceanic molybdenum isotope fractionation: diagenesis and hydrothermal ridge–flank alteration. Geochem Geophys Geosyst 3(12):1–9. doi:10.1029/2002GC000356

    Article  Google Scholar 

  • McManus J, Berelson WM, Severmann S, Poulson RL, Hammond DE, Klinkhammer GP, Holm C (2006) Molybdenum and uranium geochemistry in continental margin sediments: paleoproxy potential. Geochim Cosmochim Acta 70:4643–4662. doi:10.1016/j.gca.2006.06.1564

    Article  Google Scholar 

  • Middelburg JJ, Hoede D, Vandersloot HA, Vanderweijden CH, Wijkstra J (1988) Arsenic, antimony and vanadium in the North Atlantic Ocean. Geochim Cosmochim Acta 52(12):2871–2878. doi:10.1016/0016-7037(88) 90154-8

    Article  Google Scholar 

  • Morford JL, Emerson SR, Breckel EJ, Kim SH (2005) Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochim Cosmochim Acta 69:5021–5032. doi:10.1016/j.gca.2005.05.015

    Article  Google Scholar 

  • Morford JL, Martin WR, Kalnejais LH, François R, Bothner M, Karle I-M (2007) Insights on geochemical cycling of U, Re and Mo from seasonal sampling in Boston Harbor, Massachusetts, USA. Geochim Cosmochim Acta 71:895–917. doi:10.1016/j.gca.2006.10.016

    Article  Google Scholar 

  • Morris AW (1975) Dissolved molybdenum and vanadium in the Northeast Atlantic Ocean. Deep-Sea Res 22(1):49–54

    Google Scholar 

  • Neubert N, Nägler TF, Böttcher ME (2008) Sulphidity controls molybdenum isotope discrimination into euxinic sediments: evidence from the modern Black Sea. Geology 36(10):775–778. doi:10.1130/G24959A.1

    Article  Google Scholar 

  • Nico PS, Anastasio C, Zasoski RJ (2002) Rapid photo-oxidation of Mn(II) mediated by humic substances. Geochim Cosmochim Acta 66:4047–4056. doi:10.1016/S0016-7037(02) 01001-3

    Article  Google Scholar 

  • Nissenbaum A, Swaine DJ (1975) Organic matter-metal interactions in recent sediments: the role of humic substances. Geochim Cosmochim Acta 40:809–816. doi:10.1016/0016-7037(76) 90033-8

    Article  Google Scholar 

  • Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55(3–4):287–333. doi:10.1016/S0079-6611(02) 00138-6

    Article  Google Scholar 

  • Philippart CJM, Cadee GC, van Raaphorst W, Riegman R (2000) Long-term phytoplankton-nutrient interactions in a shallow coastal sea: algal community structure, nutrient budgets, and denitrification potential. Limnol Oceanogr 45(1):131–144

    Google Scholar 

  • Ploug H, Kühl M, Buchholz-Cleven B, Jorgensen BB (1997) Anoxic aggregates—an ephemeral phenomenon in the pelagic environment. Aquat Microb Ecol 13:285–294. doi:10.3354/ame013285

    Article  Google Scholar 

  • Poulton SW (2003) Sulfide oxidation and iron dissolution kinetics during the reaction of dissolved sulfide with ferrihydrite. Chem Geol 202(1–2):79–94. doi:10.1016/S0009-2541(03) 00237-7

    Article  Google Scholar 

  • Raabe TU, Brockmann UH, Dürselen CD, Krause M, Rick HJ (1997) Nutrient and plankton dynamics during a spring drift experiment in the German Bight. Mar Ecol Prog Ser 156:275–288. doi:10.3354/meps156275

    Article  Google Scholar 

  • Rodushkin I, Ruth T (1997) Determination of trace metals in estuarine and seawater reference materials by high resolution inductively coupled plasma mass spectrometry. J Anal At Spectrom 12(10):1181–1185. doi:10.1039/a702486j

    Article  Google Scholar 

  • Roitz JS, Flegal AR, Bruland KW (2002) The biogeochemical cycling of manganese in San Francisco Bay: temporal and spatial variations in surface water concentrations. Estuar Coast Shelf Sci 54:227–239. doi:10.1006/ecss.2000.0839

    Article  Google Scholar 

  • Rusch A, Huettel M (2000) Advective particle transport into permeable sediments—evidence from experiments in an intertidal sandflat. Limnol Oceanogr 45(3):524–533

    Article  Google Scholar 

  • Sarazin G, Michard G, Prevot F (1999) A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res 33:290–294. doi:10.1016/S0043-1354(98) 00168-7

    Article  Google Scholar 

  • Sawlan JJ, Murray JW (1983) Trace metal remobilization in the interstitial waters of red clay and hemipelagic sediments. Earth Planet Sci Lett 64:213–230. doi:10.1016/0012-821X(83) 90205-4

    Article  Google Scholar 

  • Shaw TJ, Sholkovitz ER, Klinkhammer G (1994) Redox dynamics in the Chesapeake Bay—the effect on sediment–water uranium exchange. Geochim Cosmochim Acta 58(14):2985–2995. doi:10.1016/0016-7037(94) 90173-2

    Article  Google Scholar 

  • Shiller AM (1997) Manganese in surface waters of the Atlantic Ocean. Geophys Res Lett 24(12):1495–1498. doi:10.1029/97GL01456

    Article  Google Scholar 

  • Shiller AM, Mao LJ (1999) Dissolved vanadium on the Louisiana Shelf: effect of oxygen depletion. Continent Shelf Res. 19(8):1007–1020. doi:10.1016/S0278-4343(99) 00005-9

    Article  Google Scholar 

  • Slomp CP, Malschaert JFP, Lohse L, van Raaphorst W (1997) Iron and manganese cycling in different sedimentary environments on the North Sea continental margin. Cont Shelf Res 17(9):1083–1117. doi:10.1016/S0278-4343(97) 00005-8

    Article  Google Scholar 

  • Statham PJ, Yeats PA, Landing WM (1998) Manganese in the eastern Atlantic Ocean: processes influencing deep and surface water distributions. Mar Chem 61(1–2):55–68. doi:10.1016/S0304-4203(98) 00007-3

    Article  Google Scholar 

  • Streif H (1990) Das ostfriesische Küstengebiet–Nordsee, Inseln, Watten und Marschen. Sammlung Geologischer Führer, 2. völlig neubearb. Aufl., Gebrüder Borntraeger, Berlin, Stuttgart, p 376

    Google Scholar 

  • Szalay A, Szilágyi M (1967) The association of vanadium with humic acids. Geochim Cosmochim Acta 31:1–6. doi:10.1016/0016-7037(67) 90093-2

    Article  Google Scholar 

  • Szilagyi M (1967) Sorption of molybdenum by humus preparations. Geochem Int 4:1165–1167

    Google Scholar 

  • Tabatabai MA (1974) Determination of sulphate in water samples. Sulphur Inst J 10:11–13

    Google Scholar 

  • Tappin AD, Millward GE, Statham PJ, Burton JD, Morris AW (1995) Trace-Metals in the Central and Southern North-Sea. Estuar Coast Shelf Sci 41(3):275–323

    Google Scholar 

  • Trouwborst RE, Clement BG, Tebo BM, Glazer BT, Luther GWIII (2006) Soluble Mn(III) in suboxic zones. Science 313(5795):1955–1957. doi:10.1126/science.1132876

    Article  Google Scholar 

  • Tuit CB, Ravizza G (2003) The marine distribution of molybdenum. Geochim Cosmochim Acta 67(18):A495–A495 Suppl. 1

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Internat Verein Limnol 9:38

    Google Scholar 

  • van Beusekom JEE, Brockmann U, Hesse KJ, Hickel W, Poremba K, Tillmann U (1999) The importance of sediments in the transformation and turnover of nutrients and organic matter in the Wadden Sea and German Bight. Dtsch Hydrographische Z 51(2/3):245–266. doi:10.1007/BF02764176

    Article  Google Scholar 

  • van Beusekom JEE, de Jonge VN (2002) Long-term changes in Wadden Sea nutrient cycles: importance of organic matter import from the North Sea. Hydrobiologia 475(1):185–194. doi:10.1023/A:1020361124656

    Article  Google Scholar 

  • van Raaphorst W, Kloosterhuis HT (1994) Phosphate sorption in superficial intertidal sediments. Mar Chem 48(1):1–16. doi:10.1016/0304-4203(94) 90058-2

    Article  Google Scholar 

  • von Langen PJ, Johnson KS, Coale KH, Elrod VA (1997) Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations. Geochim Cosmochim Acta 61(23):4945–4954. doi:10.1016/S0016-7037(97) 00355-4

    Article  Google Scholar 

  • Vorlicek TP, Helz GR (2002) Catalysis by mineral surfaces: implications for Mo geochemistry in anoxic environments. Geochim Cosmochim Acta 66:3679–3692. doi:10.1016/S0016-7037(01) 00837-7

    Article  Google Scholar 

  • Vorlicek TP, Kahn MD, Kasuya Y, Helz GR (2004) Capture of molybdenum in pyrite-forming sediments: Role of ligand-induced reduction by polysulfides. Geochim Cosmochim Acta 68(3):547–556. doi:10.1016/S0016-7037(03) 00444-7

    Article  Google Scholar 

  • Wanty RB, Goldhaber MB (1992) Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks. Geochim Cosmochim Acta 56:1471–1483. doi:10.1016/0016-7037(92) 90217-7

    Article  Google Scholar 

  • Wasylenki LE, Rolfe BA, Weeks CL, Spiro TG, Anbar AD (2008) Experimental investigation of the effect of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta 72:5997–6005. doi:10.1016/j.gca.2008.08.027

    Article  Google Scholar 

  • Wedepohl KH (1971) Environmental influences on the chemical composition of shales and clays. In: Ahrens LH, Press F, Runcorn SK, Urey HC (eds) Physics and chemistry of the earth, vol 8. Pergamon, Oxford, pp 305–333

    Google Scholar 

  • Wehrli B, Stumm W (1989) Vanadyl in natural waters: adsoption and hydrolysis promote oxygenation. Geochim Cosmochim Acta 53:69–77. doi:10.1016/0016-7037(89) 90273-1

    Article  Google Scholar 

  • Yamazaki H, Gohda S (1990) Distribution of dissolved molybdenum in the Seto Inland Sea, the Japan Sea, the Bering Sea and the Northwest Pacific-Ocean. Geochem J 24(4):273–281

    Google Scholar 

  • Zheng Y, Anderson RF, van Geen A, Fleisher MQ (2002) Remobilization of authigenic uranium in marine sediments by bioturbation. Geochim Cosmochim Acta 66:1759–1772. doi:10.1016/S0016-7037(01) 00886-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Malte Groh (Argonauta, Wildeshausen), Helmo Nicolai, and Waldemar Siewert (ICBM-Terramare, Wilhelmshaven) for their assistance during the sampling campaigns. We thank Conny Lenz and Vera Winde (IOW, Rostock) for their support during sampling and laboratory work. Furthermore, we would like to thank Thomas Badewien (University of Oldenburg) for providing salinity data of the monitoring station. This manuscript significantly benefited from comments and constructive suggestions by Tim Lyons and one anonymous reviewer. We wish to thank Jürgen Rullkötter for coordinating the research group and for editorial support.

The study is integrated in the Research Group “BioGeoChemistry of Tidal Flats” (FOR 432/2) and is funded by the Deutsche Forschungsgemeinschaft (BO 1584/4, BR 775/14-4) and Leibniz Institute for Baltic Sea Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Kowalski.

Additional information

Responsible Editor: Jürgen Rullkötter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalski, N., Dellwig, O., Beck, M. et al. Trace metal dynamics in the water column and pore waters in a temperate tidal system: response to the fate of algae-derived organic matter. Ocean Dynamics 59, 333–350 (2009). https://doi.org/10.1007/s10236-009-0192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-009-0192-7

Keywords

Navigation