Skip to main content

Advertisement

Log in

Cultivable bacteria from bulk water, aggregates, and surface sediments of a tidal flat ecosystem

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Most-probable-number (MPN) dilution series were used to enumerate and isolate bacteria from bulk water, suspended aggregates, the oxic layer, and the oxic–anoxic transition zone of the sediment of a tidal flat ecosystem in the southern North Sea. The heterotrophic aerobic bacteria were able to grow on agar-agar, alginate, cellulose, chitin, dried and ground Fucus vesiculosus, Marine Broth 2216, palmitate, and starch. MPN counts of bulk water and aggregate samples ranged between 0.18 × 101 and 1.1 × 106 cells per milliliter and those of the sediment surface and the transition zone between 0.8 × 101 and 5.1 × 107 cells per gram dry weight. Marine Broth and F. vesiculosus yielded the highest values of all substrates tested and corresponded to 2.3–32% of 4,6-diamidinophenyl indole cell counts. Strains of seven phylogenetic classes were obtained: Actinobacteria, Bacilli, α- and γ-Proteobacteria, Sphingobacteria, Flavobacteria, and Planctomycetacia. Only with agar-agar as substrate could organisms of all seven classes be isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alongi DM (1998) Coastal ecosystem processes. CRC, Boca Raton, p 419

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Google Scholar 

  • Arnosti C, Finke N, Larsen O, Ghobrial S (2005) Anoxic carbon degradation in Arctic sediments: microbial transformations of complex substrates. Geochim Cosmochim Acta 69:2309–2320. doi:10.1016/j.gca.2004.11.011

    Article  Google Scholar 

  • Atlas RM (1996) ASW Medium. In: Parker L (ed) Handbook of microbiological media. 2nd edn. CRC, New York

    Google Scholar 

  • Böttcher ME, Hespenheide B, Llobet-Brossa E, Beardsley C, Larsen O, Schramm A, Wieland A, Böttcher G, Berninger UG, Amann R (2000) The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study. Cont Shelf Res 20:1749–1769. doi:10.1016/S0278-4343(00)00046-7

    Article  Google Scholar 

  • Brinkhoff T, Muyzer G (1997) Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63:3789–3796

    Google Scholar 

  • Brinkhoff T, Santegoeds CM, Sahm K, Kuever J, Muyzer G (1998) A polyphasic approach to study the diversity and vertical distribution of sulfur-oxidizing Thiomicrospira species in coastal sediments of the German Wadden Sea. Appl Environ Microbiol 64:4650–4657

    Google Scholar 

  • Bruns A, Phillip H, Cypionka H, Brinkhoff T (2003) Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden Sea. Int J Syst Evol Microbiol 53:1917–1923. doi:10.1099/ijs.0.02735-0

    Article  Google Scholar 

  • Cornish EA, Fisher RA (1937) Moments and cumulants in the specification of distributions. Rev Int Stat Inst 5:307–320. doi:10.2307/1400905

    Article  Google Scholar 

  • Crump BC, Baross JA, Simenstad CA (1998) Dominance of particle-attached bacteria in the Columbia River estuary, USA. Aquat Microb Ecol 14:7–18. doi:10.3354/ame014007

    Article  Google Scholar 

  • Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204

    Google Scholar 

  • Eilers H, Pernthaler J, Glöckner FO, Amann R (2000a) Culturability and in-situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051. doi:10.1128/AEM.66.7.3044-3051.2000

    Article  Google Scholar 

  • Eilers H, Pernthaler J, Amann R (2000b) Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. Appl Environ Microbiol 66:4634–4640. doi:10.1128/AEM.66.11.4634-4640.2000

    Article  Google Scholar 

  • Eilers H, Pernthaler J, Peplies J, Glöckner FO, Gerdts G, Amann R (2001) Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134–5142. doi:10.1128/AEM.67.11.5134-5142.2001

    Article  Google Scholar 

  • Fuchs BM, Zubkov MV, Sahm K, Burkill PH, Amann R (2000) Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ Microbiol 2:191–201. doi:10.1046/j.1462-2920.2000.00092.x

    Article  Google Scholar 

  • Giovannoni SJ, Rappé M (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman D (ed) Microbial ecology of the oceans. Wiley, New York, pp 47–84

    Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63. doi:10.1038/345060a0

    Article  Google Scholar 

  • Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig T, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirelulla sp. strain 1. Proc Natl Acad Sci U S A 100:8298–8303. doi:10.1073/pnas.1431443100

    Article  Google Scholar 

  • Godden B, Penninckx MJ (1984) Identification and evolution of the cellulolytic microflora present during composition of cattle manure: on the role of Actinomycetes sp. Ann Microbiol (Paris) 135B:69–78

    Google Scholar 

  • Gough HL, Stahl DA (2003) Optimization of direct cell counting in sediment. J Microbiol Methods 52:39–46. doi:10.1016/S0167-7012(02)00135-5

    Article  Google Scholar 

  • Hahn MW, Lunsdorf H, Wu QL, Schauer M, Höfle MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69:1442–1451. doi:10.1128/AEM.69.3.1442-1451.2003

    Article  Google Scholar 

  • Haider K, Trojanowski J, Sundmann V (1978) Screening for lignin degrading bacteria by means of 14C-labelled lignins. Arch Microbiol 119:103–106. doi:10.1007/BF00407936

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    Google Scholar 

  • Ivanova EP, Bakunina IY, Sawabe T, Hayashi K, Alexeeva YV, Zhukova NV, Nicolau DV, Zvaygintseva TN, Mikhailov VV (2002) Two species of culturable bacteria associated with degradation of brown algae Fucus evanescens. Microb Ecol 43:242–249. doi:10.1007/s00248-001-1011-y

    Article  Google Scholar 

  • Jendrossek D, Tomasi G, Kroppenstedt RM (1997) Bacterial degradation of natural rubber: a privilege of actinomycetes? FEMS Microbiol Lett 150:179–188

    Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129. doi:10.1126/science.1070633

    Article  Google Scholar 

  • Kirchman DL (2002) The ecology of cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    Google Scholar 

  • Klee AJ (1993) A computer-program for the determination of most probable number and its confidence-limits. J Microbiol Methods 18:91–98. doi:10.1016/0167-7012(93)90025-D

    Article  Google Scholar 

  • Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments—a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830. doi:10.1128/AEM.71.12.7819-7830.2005

    Article  Google Scholar 

  • Llobet-Brossa E, Rossello-Mora R, Amann R (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence-in-situ-hybridization. Appl Environ Microbiol 64:2691–2696

    Google Scholar 

  • Llobet-Brossa E, Rabus R, Böttcher ME, Könneke M, Finke N, Schramm A, Meyer RL, Grötzschel S, Rossello-Mora R, Amann R (2002) Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquat Microb Ecol 29:211–226. doi:10.3354/ame029211

    Article  Google Scholar 

  • MacGregor BJ, Moser DP, Alm EW, Nealson KH, Stahl D (1997) Crenarchaeota in Lake Michigan sediment. Appl Environ Microbiol 63:1178–1181

    Google Scholar 

  • Massana R, Jürgens K (2003) Composition and population dynamics of planktonic bacteria and bacterivorous flagellates in seawater chemostat cultures. Aquat Microb Ecol 32:11–22. doi:10.3354/ame032011

    Article  Google Scholar 

  • Mayali X, Franks PJS, Azam F (2008) Cultivation and ecosystem role of a marine Roseobacter clade-affiliated cluster bacterium. Appl Environ Microbiol 74:2595–2603. doi:10.1128/AEM.02191-07

    Article  Google Scholar 

  • Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32:1–9. doi:10.1016/0273-1223(96)00001-7

    Google Scholar 

  • Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, van Elsas JD, Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic, Dordrecht, pp 1–27

    Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) Determination of chlorophylls and total carotenoids. Spectrophotometric method. A manual of chemical and biological methods for seawater analysis. Pergamon, New York, pp 101–112

    Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Rappé MS, Vergin K, Giovannoni SJ (2000) Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol 33:219–232

    Google Scholar 

  • Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633. doi:10.1038/nature00917

    Article  Google Scholar 

  • Ravenschlag K, Sahm K, Knoblauch C, Jørgensen BB, Amann R (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl Environ Microbiol 66:3592–3602. doi:10.1128/AEM.66.8.3592-3602.2000

    Article  Google Scholar 

  • Rehnstam AS, Backman S, Smith DC, Azam F, Hagstrom A (1993) Blooms of sequence-specific culturable bacteria in the sea. FEMS Microbiol Ecol 102:161–166. doi:10.1111/j.1574-6968.1993.tb05806.x

    Article  Google Scholar 

  • Reichenbach H (1992) The order Cytophagales. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, 2nd edn, vol. 1. Springer, New York, pp 3632–3666

    Google Scholar 

  • Revsbech NP (1989) An oxygen microelectrode with a guard cathode. Limnol Oceanogr 55:1907–1910

    Google Scholar 

  • Rheinheimer G (1991) Aquatic microbiology, 4th edn. Wiley., New York

    Google Scholar 

  • Rink B, Martens T, Fischer D, Lemke A, Grossart HP, Simon M, Brinkhoff T (2008) Short-term dynamics of bacterial communities in a tidally affected coastal ecosystem. FEMS Microbiol Ecol 66:306–319

    Article  Google Scholar 

  • Sakai T, Kimura H, Kato I (2002) A marine strain of Flavobacteriaceae utilizes brown seaweed fucoidan. Mar Biotechnol 4:399–405. doi:10.1007/s10126-002-0032-y

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Northern hybridisation. Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Schlesner H, Rensmann C, Tindall BJ, Gade D, Rabus R, Pfeiffer S, Hirsch P (2004) Taxonomic heterogeneity within the Planctomycetales as derived by DNA–DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula. Int J Syst Evol Microbiol 54:1567–1580. doi:10.1099/ijs.0.63113-0

    Article  Google Scholar 

  • Selje N, Simon M, Brinkhoff T (2004) A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448. doi:10.1038/nature02272

    Article  Google Scholar 

  • Sieburth JM (1967) Seasonal selection of estuarine bacteria by water temperature. J Exp Mar Biol Ecol 1:98–121. doi:10.1016/0022-0981(67)90009-3

    Article  Google Scholar 

  • Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084

    Google Scholar 

  • Stevens H, Brinkhoff T, Simon M (2005a) Composition of free-living, aggregate-associated and sediment surface-associated bacterial communities in the German Wadden Sea. Aquat Microb Ecol 38:15–30. doi:10.3354/ame038015

    Article  Google Scholar 

  • Stevens H, Stübner M, Simon M, Brinkhoff T (2005b) Phylogeny of Proteobacteria and Bacteroidetes from oxic habitats of a tidal flat ecosystem. FEMS Microbiol Ecol 54:351–365. doi:10.1016/j.femsec.2005.04.008

    Article  Google Scholar 

  • Stevens H, Brinkhoff T, Rink B, Vollmers J, Simon M (2007) Diversity and abundance of gram-positive bacteria in a tidal flat ecosystem. Environ Microbiol 9:1810–1822 . doi:10.1111/j.1462-2920.2007.01302.x

    Article  Google Scholar 

  • Stingl U, Tripp HJ, Giovannoni SJ (2007) Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J 1:361–371

    Google Scholar 

  • Svitil AL, Chadhain SMN, Moore JA, Kirchman DL (1997) Chitin degradation proteins produced by the marine bacterium Vibrio harveyi growing on different forms of chitin. Appl Environ Microbiol 63:408–413

    Google Scholar 

  • Teske A, Brinkhoff T, Muyzer G, Moser DP, Rethmeier S, Jannasch HW (2000) Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol 66:3125–3133. doi:10.1128/AEM.66.8.3125-3133.2000

    Article  Google Scholar 

  • Trolldenier G (1993) Bestimmung physiologischer Gruppen nach der MPN-Methode. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Bodenbiologische Arbeitsmethoden. 2nd edn. Springer, Berlin, pp 30–32

    Google Scholar 

  • Wieringa EBA, Overmann J, Cypionka H (2000) Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Environ Microbiol 2:417–427. doi:10.1046/j.1462-2920.2000.00123.x

    Article  Google Scholar 

  • Wilms R, Köpke B, Sass H, Chang TS, Cypionka H, Engelen B (2006a) Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8:709–719. doi:10.1111/j.1462-2920.2005.00949.x

    Article  Google Scholar 

  • Wilms R, Sass H, Köpke B, Köster J, Cypionka H, Engelen B (2006b) Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediment along a vertical profile of several meters. Appl Environ Microbiol 72:2756–2764. doi:10.1128/AEM.72.4.2756-2764.2006

    Article  Google Scholar 

  • Ziervogel K, Arnosti C (2008) Polysaccharide hydrolysis in aggregates and free enzyme activity in aggregate-free seawater from the north-eastern Gulf of Mexico. Environ Microbiol 10:289–299. doi:10.1111/j.1462-2920.2007.01451.x

    Article  Google Scholar 

  • Zobell CE (1946) Marine microbiology. A monograph on hydrobacteriology. Chronica Botanica Co., Waltham, p 240

    Google Scholar 

Download references

Acknowledgements

We thank O. Larsen for microsensor measurements and A. Friedrich for helpful discussions on the concept of the study. We are grateful to two anonymous reviewers for helpful suggestions on an earlier version of this publication. This work was supported by grants from the Volkswagen Foundation within the Lower Saxonian priority program Marine Biotechnology and by Deutsche Forschungsgemeinschaft within the research group BioGeoChemistry of Tidal Flats.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Brinkhoff.

Additional information

Responsible Editor: Jürgen Rullkötter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, H., Simon, M. & Brinkhoff, T. Cultivable bacteria from bulk water, aggregates, and surface sediments of a tidal flat ecosystem. Ocean Dynamics 59, 291–304 (2009). https://doi.org/10.1007/s10236-008-0168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-008-0168-z

Keywords

Navigation