Skip to main content

Advertisement

Log in

Physical processes contributing to the water mass transformation of the Indonesian Throughflow

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The properties of the waters that move from the Pacific to the Indian Ocean via passages in the Indonesian archipelago are observed to vary with along-flow-path distance. We study an ocean model of the Indonesian Seas with reference to the observed water property distributions and diagnose the mechanisms and magnitude of the water mass transformations using a thermodynamical methodology. This model includes a key parameterization of mixing due to baroclinic tidal dissipation and simulates realistic water property distributions in all of the seas within the archipelago. A combination of air–sea forcing and mixing is found to significantly change the character of the Indonesian Throughflow (ITF). Around 6 Sv (approximately 1/3 the model net ITF transport) of the flow leaves the Indonesian Seas with reduced density. Mixing transforms both the intermediate depth waters (transforming 4.3 Sv to lighter density) and the surface waters (made denser despite the buoyancy input by air–sea exchange, net transformation = 2 Sv). The intermediate transformation to lighter waters suggests that the Indonesian transformation contributes significantly to the upwelling of cold water in the global conveyor belt. The mixing induced by the wind is not driving the transformation. In contrast, the baroclinic tides have a major role in this transformation. In particular, they are the only source of energy acting on the thermocline and are responsible for creating the homostad thermocline water, a characteristic of the Indonesian outflow water. Furthermore, they cool the sea surface temperature by between 0.6 and 1.5°C, and thus allow the ocean to absorb more heat from the atmosphere. The additional heat imprints its characteristics into the thermocline. The Indonesian Seas cannot only be seen as a region of water mass transformation (in the sense of only transforming water masses in its interior) but also as a region of water mass formation (as it modifies the heat flux and induced more buoyancy flux). This analysis is complemented with a series of companion numerical experiments using different representations of the mixing and advection schemes. All the different schemes diagnose a lack of significant lateral mixing in the transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Adjustment of the horizontal resolution to preserve the section in one grid point strait such as Lombok.

References

  • Alford M, Gregg MC (2001) Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J Geophys Res 106(C8):16,947–16,968. doi:10.1029/2000JC000370

    Article  Google Scholar 

  • Arief D, Murray SP (1996) Low-frequency fluctuations in the Indonesian Throughflow through Lombok Strait. J Geophys Res 101:12,455–12,464. doi:10.1029/96JC00051

    Article  Google Scholar 

  • Barnier B et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn 56:377–378. doi:10.1007/s10236-006-0090-1

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388. doi:10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2

    Article  Google Scholar 

  • Cresswell G, Frische A, Peterson J, Quadfasel D (1993) Circulation in the Timor Sea. J Geophys Res 98:14379–14389. doi:10.1029/93JC00317

    Article  Google Scholar 

  • Ffield A, Gordon AL (1992) Vertical mixing in the Indonesian thermocline. J Phys Oceanogr 22:184–195. doi:10.1175/1520-0485(1992)022<0184:VMITIT>2.0.CO;2

    Article  Google Scholar 

  • Ffield A, Gordon A (1996) Tidal mixing signatures in the Indonesian seas. J Phys Oceanogr 26:1,924–1,937

    Article  Google Scholar 

  • Fieux M, Andrie C, Delecluse P, Ilahude AG, Kartavtseff A, Mantisi F, Molcard R, Swallow JC (1994) Measurements within the Pacific–Indian Oceans region. Deep-Sea Research. Part A 41:1091–1130

    Article  Google Scholar 

  • Fieux M, Molcard R, Ilahude AG (1996) Geostrophic transport of the Pacific–Indian Oceans Throughflow. J Geophys Res 101:12421–12432. doi:10.1029/95JC03566

    Article  Google Scholar 

  • Gerkema T, Lam F-PA, Maas LRM (2004) Internal tides in the Bay of Biscay: conversion rates and seasonal effects. Deep Sea Res Part II Top Stud Oceanogr 51:2995–3008. doi:10.1016/j.dsr2.2004.09.012

    Article  Google Scholar 

  • Gordon AL (2005) Oceanography of the Indonesian seas and their throughflow. Oceanography (Wash DC) 18:14–27

    Google Scholar 

  • Gordon AL, McClean J (1999) Thermohaline stratification of the Indonesian Seas—model and observations. J Phys Oceanogr 29:198–216. doi:10.1175/1520-0485(1999)029<0198:TSOTIS>2.0.CO;2

    Article  Google Scholar 

  • Hautala S, Reid JL, Bray NA (1996) The distribution and mixing of Pacific water masses in the Indonesian Seas. J Geophys Res 101:12,375–12,390. doi:10.1029/96JC00037

    Article  Google Scholar 

  • Hirst AC, Godfrey JS (1993) The role of the Indonesian Throughflow in a global ocean GCM. J Phys Oceanogr 23:1057–1086. doi:10.1175/1520-0485(1993)023<1057:TROITI>2.0.CO;2

    Article  Google Scholar 

  • Iudicone D, Madec G, McDougall TJ (2008a) Water-mass transformations in a neutral density framework and the key role of light penetration. J Phys Oceanogr 38:1357–1376 doi:10.1175/2007JPO3464.1

    Article  Google Scholar 

  • Iudicone D, Madec G, Blanke B, Speich S (2008b) The role of Southern ocean surface forcings and mixing in the Global conveyor. J Phys Oceanogr 38:1377–1400 doi:10.1175/2008JPO3519.1

    Article  Google Scholar 

  • Kamenkovich VM, Burnett WH, Gordon AI, Mellor GL (2003) The Pacific/Indian Ocean pressure difference and its influence on the Indonesian Seas circulation: Part II—The study with specified sea-surface heights. J Mar Res 61(5):613–634. doi:10.1357/002224003771815972

    Article  Google Scholar 

  • Koch-Larrouy A, Madec G, Bouruet-Aubertot P, Gerkema T, Bessières L, Molcard R (2007) On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophys Res Lett 34:L04604. doi:10.1029/2006GL028405

    Article  Google Scholar 

  • Koch-Larrouy A, Madec G, Blanke B, Molcard R (2008) Quantification of the water paths and exchanges in the Indonesian archipelago. Ocean Dynamics (in press)

  • Levitus S, Boyer TP, Conkright ME, O’Brien T, Antonov J, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) NOAA Atlas NESDIS 18, WORLD OCEAN DATABASE (1998) Vol. 1: Introduction. U.S. Government Printing Office, Washington D.C., p 346

    Google Scholar 

  • Levy M, Estubier A, Madec G (2001) Choice of an advection scheme for biogeochemical ocean models. Geophys Res Lett 28(19):3725–3728. doi:10.1029/2001GL012947

    Article  Google Scholar 

  • Lyard F, et Le Provost C (2002) Energy budget of the tidal hydrodynamic model fes99. Appears in C. Le Provosts’ talk: “Ocean tides after a decade of high precision satellite altimetry”, SWT Jason 1, Arles, 2003

  • Madec G (2008) NEMO = the OPA9 ocean engine. Note du Pole de Modélisation. Institut Pierre-Simon Laplace., 1:100 pp. http://www.lodyc.jussieu.fr/nemo/

  • Madec G, Delecluse P, Imbard M (1998) Opa8.1 ocean general circulation model reference manual. Note IPSL, 11:Paris VI, France

  • McDougall TJ, Jackett DR (2005) An assessment of orthobaric density in the global ocean. J Phys Oceanogr 35:2054–2075. doi:10.1175/JPO2796.1

    Article  Google Scholar 

  • Molcard R, Fieux M, Ilahude AG (1996) The Indo-Pacific Throughflow in the Timor Passage. J Geophys Res 101:12411–12420. doi:10.1029/95JC03565

    Article  Google Scholar 

  • Molcard R, Fieux M, Syamsudin F (2001) The throughflow within Ombai Strait. Deep Sea Res Part I Oceanogr Res Pap 48:1237–1253. doi:10.1016/S0967-0637(00)00084-4

    Article  Google Scholar 

  • Potemra JT, Lukas R, Mitchum GT (1997) Large scale estimation of transport from the Pacific to the Indian Ocean. J Geophys Res 102:27795–27812. doi:10.1029/97JC01719

    Article  Google Scholar 

  • Polton JA, Smith JA, MacKinnon JA, Tejada-Martınez AE (2008) Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophys Res Lett 35:L13602. doi:10.1029/2008GL033856

    Article  Google Scholar 

  • Purba M, Atmadipoera A (1992) On the study of dynamic topography in the southern Java–Sumba waters, paper presented at Third Ocean Research Institute–Indonesian Institute of Sciences (LIPI) Seminar on Marine Sciences, Oceanography for Fisheries, Tokyo, August 19–21

  • St. Laurent LC, Simmons HL, Jayne SR (2002) Estimates of tidally driven enhanced mixing in the deep ocean. Geophys Res Lett 29:10.1029

    Article  Google Scholar 

  • Tréguier AM, Barnier B, de Miranda AP, Molines JM, Grima N, Imbard M, Madec G, Messager C, Reynaud T, Michel S (2001) An eddy-permitting model of the Atlantic circulation: evaluating open boundary conditions. J Geophys Res 106(C10):22,115–22,129

    Article  Google Scholar 

  • van Aken HM (2007) Annual report NIOZ http://www.nioz.nl/public/annual_report/2007/van%20aken.pdf

  • van Aken HM, Punjanan J, Saimima S (1988) Physical aspects of the flushing of the east Indonesian basins. Neth J Sea Res 22:315–339. doi:10.1016/0077-7579(88)90003-8

    Article  Google Scholar 

  • Wajsowicz RC, Schneider EK (2001) The Indonesian Throughflow’s effect on global climate determined from the COLA Coupled Climate System. J Climate 14:3,029–3,042

    Google Scholar 

  • Walin G (1982) On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34:187–195

    Article  Google Scholar 

  • Wijffels SE, Meyers G, Godfrey JS (2008) A twenty year average of the Indonesian Throughflow: regional currents and the interbasin exchange. J Phys Oceanogr, doi: 10.1175/JPO2008/3987.1

  • Wyrtki K (1961) Physical oceanography of the southeast Asian Waters, NAGA Rep. 2, Scripps Institution of Oceanography

Download references

Acknowledgements

This work is part of the DRAKKAR project and is supported by MERCATOR-ocean (projects 100043 and 061396) and by the Marine Environment and Security for the European Area project (MERSEA, SIP3 CI 2003 502885). The ocean model integrations have been performed at the Institut de Développement et des Ressources en Informatique Scientifique (IDRIS, project 51140 and 1396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Koch-Larrouy.

Additional information

Responsible editor: Tony Hirst

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch-Larrouy, A., Madec, G., Iudicone, D. et al. Physical processes contributing to the water mass transformation of the Indonesian Throughflow. Ocean Dynamics 58, 275–288 (2008). https://doi.org/10.1007/s10236-008-0154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-008-0154-5

Keywords

Navigation