Ocean Dynamics

, Volume 58, Issue 5–6, pp 461–473 | Cite as

Multiscale mesh generation on the sphere

  • Jonathan Lambrechts
  • Richard Comblen
  • Vincent Legat
  • Christophe Geuzaine
  • Jean-François Remacle


A method for generating computational meshes for applications in ocean modeling is presented. The method uses a standard engineering approach for describing the geometry of the domain that requires meshing. The underlying sphere is parametrized using stereographic coordinates. Then, coastlines are described with cubic splines drawn in the stereographic parametric space. The mesh generation algorithm builds the mesh in the parametric plane using available techniques. The method enables to import coastlines from different data sets and, consequently, to build meshes of domains with highly variable length scales. The results include meshes together with numerical simulations of various kinds.


Mesh generation Sphere Ocean modeling 


  1. Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algorithm for approximate nearest neighbor searching. J ACM 45:891–923. http://www.cs.umd.edu/ mount/ANN/ CrossRefGoogle Scholar
  2. Beall MW, Shephard MS (1997) A general topology-based mesh data structure. Int J Numer Methods Eng 40(9):1573–1596CrossRefGoogle Scholar
  3. Danilov S, Kivman G, Schröter J (2005) Evaluation of an eddy-permitting finite-element ocean model in the north atlantic. Ocean Model 10:35–49CrossRefGoogle Scholar
  4. Dwyer RA (1986) A simple divide-and-conquer algorithm for computing delaunay triangulations in o(n log log n) expected time. In: Proceedings of the second annual symposium on computational geometry, Yorktown Heights, 2–4 June 1986, pp 276–284Google Scholar
  5. George P-L, Frey P (2000) Mesh generation. Hermes, LyonGoogle Scholar
  6. Gorman G, Piggott M, Pain C (2007) Shoreline approximation for unstructured mesh generation. Comput Geosci 33:666–677CrossRefGoogle Scholar
  7. Gorman G, Piggott M, Pain C, de Oliveira R, Umpleby A, Goddard A (2006) Optimisation based bathymetry approximation through constrained unstructured mesh adaptivity. Ocean Model 12:436–452CrossRefGoogle Scholar
  8. Griffies SM, Böning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier A-M, Webb D (2000) Developments in ocean climate modeling. Ocean Model 2:123–192CrossRefGoogle Scholar
  9. Hagen SC, Westerink JJ, Kolar RL, Horstmann O (2001) Two-dimensional, unstructured mesh generation for tidal models. Int J Numer Methods Fluids 35:669–686 (printed version in Richard’s office)CrossRefGoogle Scholar
  10. Haimes R (2000) CAPRI: computational analysis programming interface (a solid modeling based infra-structure for engineering analysis and design). Tech. rep., Massachusetts Institute of TechnologyGoogle Scholar
  11. Henry RF, Walters RA (1993) Geometrically based, automatic generator for irregular triangular networks. Commun Numer Methods Eng 9:555–566CrossRefGoogle Scholar
  12. Lambrechts J, Hanert E, Deleersnijder E, Bernard P-E, Legat V, Wolanski J-FRE (2008) A high-resolution model of the whole great barrier reef hydrodynamics. Estuar Coast Shelf Sci 79(1):143–151. doi:10.1016/j.ecss.2008.03.016 CrossRefGoogle Scholar
  13. Le Provost C, Genco ML, Lyard F (1994) Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res 99:777–797Google Scholar
  14. Legrand S, Deleersnijder E, Hanert E, Legat V, Wolanski E (2006) High-resolution, unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia. Estuar Coast Shelf Sci 68:36–46CrossRefGoogle Scholar
  15. Legrand S, Legat V, Deleersnijder E (2000) Delaunay mesh generation for an unstructured-grid ocean circulation model. Ocean Model 2:17–28CrossRefGoogle Scholar
  16. Lietaer O, Fichefet T, Legat V (2008) The effects of resolving the Canadian Arctic Archipelago in a finite element sea ice model. Ocean Model 24:140–152. doi:10.1016/j.ocemod.2008.06.002 CrossRefGoogle Scholar
  17. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415CrossRefGoogle Scholar
  18. National Geographic Data Center (2006) ETOPO1 global relief model. http://www.ngdc.noaa.gov/mgg/global/global.html.
  19. Piggott M, Gorman G, Pain C (2007) Multi-scale ocean modelling with adaptive unstructured grids. CLIVAR Exch Ocean Model Dev Assess 12(42):21–23 (http://eprints.soton.ac.uk/47576/)Google Scholar
  20. Rebay S (1993) Efficient unstructured mesh generation by means of delaunay triangulation and Bowyer-Watson algorithm. J Comput Phys 106:25–138CrossRefGoogle Scholar
  21. Weatherill NP (1990) The integrity of geometrical boundaries in the two-dimensional delaunay triangulation. Commun Appl Numer Methods 6(2):101–109CrossRefGoogle Scholar
  22. Wessel P, Smith WHF (1996) A global self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res 101(B4):8741–8743. http://www.soest.hawaii.edu/wessel/gshhs/gshhs.html CrossRefGoogle Scholar
  23. White L, Deleersnijder E, Legat V (2008) A three-dimensional unstructured mesh finite element shallow-water model, with application to the flows around an island and in a wind-driven elongated basin. Ocean Model 22:26–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jonathan Lambrechts
    • 1
  • Richard Comblen
    • 1
  • Vincent Legat
    • 1
  • Christophe Geuzaine
    • 2
  • Jean-François Remacle
    • 1
  1. 1.Institute for Mechanical, Material and Civil EngineeringUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Electrical Engineering and Computer ScienceMontefiore InstituteLiègeBelgium

Personalised recommendations