Baroclinic tidal flows and inundation processes in Cook Inlet, Alaska: numerical modeling and satellite observations

Abstract

A wetting and drying (WAD) algorithm is implemented in a baroclinic three-dimensional ocean circulation model of Cook Inlet, Alaska, where large tidal ranges (≈10 m) regularly expose extensive mudflats. The model includes tides and wind- and buoyancy-induced flows. In the upper Inlet, the model successfully simulates large amplification of tides and propagation of fast (3 ∼ 4 m s−1) tidal bores over shallow mudflats. The simulated return flows during ebb expose large areas (∼100 km2) of the mudflats. Medium-resolution (250- and 500-m) images obtained from the moderate resolution imaging spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites were used to verify the model results by identifying the location, extent, and temporal changes of the exposed mudflat regions. The results demonstrate the value of operational, medium-resolution remote sensing data in evaluating the WAD model. Sensitivity tests show that WAD produces approximately 20% larger tidal amplitude and 10% slower phase than the corresponding experiment without WAD. In the deep channel of the central Inlet, the confluence of saline water of the lower Inlet with brackish water from rivers and melting ice from land around the upper Inlet produces a salinity front. At the simulated front, strong vertical circulation cells and surface convergence and currents develop, especially during the flood. The characteristics resemble those of “rip tides” often observed in this region.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Balzano A (1998) Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coast Eng 34:83–107

    Article  Google Scholar 

  2. Beaglehole JC (1974) The life of Captain James Cook. Stanford University Press, Stanford, CA, p 760

    Google Scholar 

  3. Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps N (ed) Three-dimensional coastal ocean models. American Geophysical Union, Washington, DC, p 208

    Google Scholar 

  4. Casulli V, Cheng R (1992) Semi-implicit finite difference methods for three-dimensional shallow water flow. Int J Numer Methods Fluids 15:629–648

    Article  Google Scholar 

  5. Chassignet EP, Smith LT, Halliwell GR, Bleck R (2003) North Atlantic simulations with the hybrid coordinate ocean model (HYCOM): impact of the vertical coordinate choice, reference pressure and thermobaricity. J Phys Oceanogr 33:2504–2526

    Article  Google Scholar 

  6. Chen P, Mellor GL (1999) Determination of tidal boundary forcing using tide station data. In: Mooers CNK (ed) Coastal ocean prediction, coastal and estuarine studies, vol. 56. American Geophysical Union, Washington, DC, pp 329–351

    Google Scholar 

  7. Chen C, Beardsley RC, Cowles G (2006) An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanography 19(1):78–89

    Google Scholar 

  8. Drillet Y, Bourdallé-Badie R, Siefridt L, Le Provost C (2005) Meddies in the Mercator North Atlantic and Mediterranean Sea eddy-resolving model. J Geophys Res 110:C03016

    Article  Google Scholar 

  9. Ezer T, Mellor GL (2000) Sensitivity studies with the North Atlantic sigma coordinate Princeton ocean model. Dyn Atmos Ocean 32:185–208

    Article  Google Scholar 

  10. Fan SJ, Oey L-Y, Hamilton P (2004) Assimilation of drifters and satellite data in a circulation model of the northeastern Gulf of Mexico. Cont Shelf Res 24(9):1001–1013

    Article  Google Scholar 

  11. Flather RA, Hubbert KP (1990) Tide and surge models for shallow-water-Morecambe Bay revisited. In: Davies AM (ed) Modeling marine systems, vol. I. CRC Press, Boca Raton, FL, pp 135–166

    Google Scholar 

  12. Gill AE (1982) Atmosphere-ocean dynamics. Academic, New York, p 662

    Google Scholar 

  13. Haley B, Tomlins G, Smith O, Wilson W, Link M (2000) Mapping Cook Inlet rip tides using local knowledge and remote sensing. MMS Report, OCS Study, MMS 2000–025

  14. Hu C, Muller-Karger FE, Taylor C, Myhre D, Murch B, Odriozola AL, Godoy G (2003) MODIS detects oil spills in Lake Maracaibo, Venezuela. Eos AGU Trans 84(33):313, 319

    Google Scholar 

  15. Hu C, Chen Z, Clayton TD, Swarzenski P, Brock JC, Muller-Karger FE (2004) Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, Florida. Remote Sens Environ 93:423–441

    Article  Google Scholar 

  16. Ji ZG, Morton MR, Hamrick JM (2001) Wetting and drying simulation of estuarine processes. Estuar Coast Shelf Sci 53:683–700

    Article  Google Scholar 

  17. Ko D-S, Preller RH, Martin P (2003) An experimental real-time intra Americas sea ocean nowcast/forecast system for coastal prediction. Proceedings, AMS 5th conference on coastal atmospheric and oceanic prediction and processes. AMS, New York

    Google Scholar 

  18. Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–336

    Article  Google Scholar 

  19. Lin B, Falconer RA (1997) Three-dimensional layer-integrated modeling of estuarine flows with flooding and drying. Estuar Coast Shelf Sci 44:737–751

    Article  Google Scholar 

  20. Lynch DR, Gray WG (1980) Finite-element simulation of flow in deforming regions. J Comp Phys 36:135–153

    Article  Google Scholar 

  21. Marchesiello P, McWilliams JC, Shchepetkin A (2003) Equilibrium structure and dynamics of the California current system. J Phys Oceangr 33:753–783

    Article  Google Scholar 

  22. Mellor GL (2003) The three-dimensional current and surface wave equations. J Phys Oceanogr 33:1978–1989

    Article  Google Scholar 

  23. Mellor GL (2004) Users’ guide for a three-dimensional, primitive equation, numerical ocean model. Program in atmospheric and oceanic sciences. Princeton University Press, Princeton, NJ, p 42

    Google Scholar 

  24. Mellor GL, Yamada T (1982) Development of a turbulent closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Google Scholar 

  25. Miller RL, Mckee BA (2004) Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens Environ 93:259–266

    Article  Google Scholar 

  26. Moore SE, Shelden KEW, Litzky LK, Mahoney BA, Rugh DJ (2000) Beluga, Delphinapterus leucas, habitat associations in Cook Inlet, Alaska. Mar Fish Rev 62(3):60–80

    Google Scholar 

  27. Oey LY (1996) Simulation of mesoscale variability in the Gulf of Mexico. J Phys Oceanogr 26:145–175

    Article  Google Scholar 

  28. Oey L-Y (2005) A wetting and drying scheme for POM. Ocean Model 9:133–150

    Article  Google Scholar 

  29. Oey LY (2006) An OGCM with movable land-sea boundaries. Ocean Model 13:176–195

    Article  Google Scholar 

  30. Oey LY, Chen P (1992) A model simulation of circulation in the north-east Atlantic shelves and seas. J Geophys Res 97:20087–20115

    Google Scholar 

  31. Oey LY, Lee H-C, Schmitz WJ (2003) Effects of winds and Caribbean eddies on the frequency of loop current eddy shedding: a numerical model study. J Geophys Res 108(C10):3324, DOI 10.1029/2002JC001698

    Article  Google Scholar 

  32. Oey LY, Ezer T, Forristall G, Cooper C, DiMarco S, Fan S (2005) An exercise in forecasting loop current and eddy frontal positions in the Gulf of Mexico. Geophys Res Lett 32:L12611, DOI 10.1029/2005GL023253

    Article  Google Scholar 

  33. Okkonen SR, Howell SS (2003) Measurements of temperature, salinity and circulation in Cook Inlet, Alaska. Report, OCE Study MMS 2003-036. Mineral Management Service, p 28

  34. Orlanski I (1976) A simple boundary condition for unbounded hyperbolic flows. J Comput Phys 21:251–269

    Article  Google Scholar 

  35. Romanou A, Chassignet EP, Sturges W (2004) The Gulf of Mexico circulation within a high resolution numerical simulation of the North Atlantic Ocean. J Geophys Res 109:CO1003, DOI 10.1029/2003CJ001770

    Article  Google Scholar 

  36. Royer TC (1975) Seasonal variations of waters in the northern Gulf of Alaska. Deep-Sea Res 22:403–416

    Google Scholar 

  37. Sheng J, Tang L (2003) A numerical study of circulation in the western Caribbean Sea. J Phys Oceanogr 33:2049–2069

    Article  Google Scholar 

  38. Smagorinsky J (1963) General circulation experiments with the primitive equations. Part I: the basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  39. Smith RD, Maltrud ME, Bryan FO, Hecht MW (2000) Numerical simulation of the North Atlantic Ocean at 1/10 deg. J Phys Oceanogr 30:1532–1561

    Article  Google Scholar 

  40. Stelling GS, Wiersma AK, Willemse JBTM (1986) Practical aspects of accurate tidal computations. J Hydraul Eng (ASCE) 9:802–817

    Article  Google Scholar 

  41. Teague WJ, Carron NJ, Hogan PJ (1990) A comparison between the generalized digital environmental model and levitus climatologies. J Geophys Res 95:7167–7183

    Google Scholar 

  42. Wang J (1996) Global linear stability of the 2-D shallow water equations: an application of the distributive theorem of roots for polynomials on the unit circle. Mon Weather Rev 124(6):1301–1310

    Article  Google Scholar 

  43. Wang J, Jin M, Musgrave DL, Ikeda M (2004) A hydrological digital elevation model for freshwater discharge into the Gulf of Alaska. J Geophys Res 109:C07009, DOI 10.1029/2002JC001430

    Article  Google Scholar 

  44. Xie L, Pietrafesa LJ, Peng M (2004) Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J Coast Res 20:1209–1223

    Article  Google Scholar 

  45. Xiong Q, Royer TC (1984) Coastal temperature and salinity in the northern Gulf of Alaska. J Geophys Res 89:8061–8066

    Article  Google Scholar 

Download references

Acknowledgment

The study was supported by the Mineral Management Service (Contract no. 1435-01-03-CT-72021); Oey and Ezer were also partly supported by Office of Naval Research (ONR) grants; Hu and Muller-Karger were supported by National Aeronautics and Space Administration (NASA) grants. The NOAA/Geophysical Fluid Dynamics Laboratory (GFDL) provided computational resources.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tal Ezer.

Additional information

Responsible editor: Jörg-Olaf Wolff

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oey, L., Ezer, T., Hu, C. et al. Baroclinic tidal flows and inundation processes in Cook Inlet, Alaska: numerical modeling and satellite observations. Ocean Dynamics 57, 205–221 (2007). https://doi.org/10.1007/s10236-007-0103-8

Download citation

Keywords

  • Numerical model
  • Tides
  • Inundation
  • Satellite data
  • MODIS
  • Alaska