Skip to main content
Log in

Mapping nonlinear shallow-water tides: a look at the past and future

  • Original paper
  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Overtides and compound tides are generated by nonlinear mechanisms operative primarily in shallow waters. Their presence complicates tidal analysis owing to the multitude of new constituents and their possible frequency overlap with astronomical tides. The science of nonlinear tides was greatly advanced by the pioneering researches of Christian Le Provost who employed analytical theory, physical modeling, and numerical modeling in many extensive studies, especially of the tides of the English Channel. Le Provost’s complementary work with satellite altimetry motivates our attempts to merge these two interests. After a brief review, we describe initial steps toward the assimilation of altimetry into models of nonlinear tides via generalized inverse methods. A series of barotropic inverse solutions is computed for the M\(_4\) tide over the northwest European Shelf. Future applications of altimetry to regions with fewer in situ measurements will require improved understanding of error covariance models because these control the tradeoffs between fitting hydrodynamics and data, a delicate issue in coastal regions. While M\(_4\) can now be robustly determined along the Topex/Poseidon satellite ground tracks, many other compound tides face serious aliasing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arbic BK (2005) Atmospheric forcing of the oceanic semidiurnal tide. Geophys Res Lett 32:L02610

    Article  Google Scholar 

  • Andersen OB (1999) Shallow water tides on the northwest European shelf from TOPEX/POSEIDON altimetry. J Geophys Res 104:7729–7741

    Article  Google Scholar 

  • Andersen OB, Knudsen P (1997) Multi-satellite ocean tide modelling—the K\(_1\) constituent. Prog Oceanogr 40:197–216

    Article  Google Scholar 

  • Andersen OB, Woodworth PL, Flather RA (1995) Intercomparison of recent global ocean tide models. J Geophys Res 100(C12):25261–25282

    Article  Google Scholar 

  • Bennett AF (1992) Inverse methods in physical oceanography. Cambridge Univ. Press, p 346

  • Cartwright DE (1968) A unified analysis of tides and surges round north and east Britain. Philos Trans R Soc Lond A 263:1–55

    Google Scholar 

  • Cartwright DE, Ray RD (1990) Oceanic tides from Geosat altimetry. J Geophys Res 95:3069–3090

    Google Scholar 

  • Cartwright DE, Zetler BD (1985) Pelagic tidal constants—2. Int Assoc Phys Sci Oceans 33:59 (Paris)

    Google Scholar 

  • Chabert d’Hières G, Le Provost C (1970) Determination des characteristiques des ondes harmoniques M2 et M4 dans la manche sur modele reduit hydraulique. C R Acad Sci A 270:1703–1706

    Google Scholar 

  • Chabert d’Hières G, Le Provost C (1976) On the use of an hydraulic model to study non linear tidal deformations in shallow waters: applications to the English Channel. Mem Soc R Sci Liege 6:113–124

    Google Scholar 

  • Chabert d’Hières G, Le Provost C (1979) Atlas des composantes harmoniques de la marée dans la Manche. Ann Hydrogr 6:5–36

    Google Scholar 

  • Davies AM (1986) A three-dimensional model of the northwest European shelf with application to the M\(_4\) tide. J Phys Oceanogr 16:797–813

    Article  Google Scholar 

  • Davies AM, Kwong SCM, Flather RA (1997) Formulation of a variable-function three-dimensional model, with applications to the M\(_2\) and M\(_4\) tide on the Northwest European continental shelf. Cont Shelf Res 17:165–204

    Article  Google Scholar 

  • Egbert GD, Bennett AF (1996) Data assimilation methods for ocean tides. In: Malanotte-Rizzoli P (ed) Modern approaches to data assimilation in ocean modeling. Elsevier, Amsterdam, pp 147–179

    Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19:183–204

    Article  Google Scholar 

  • Egbert GD, Bennett AF, Foreman MGG (1994) Topex/Poseidon tides estimated using a global inverse model. J Geophys Res 99:24821–24852

    Article  Google Scholar 

  • Flather RA (1976) A tidal model of the north-west European continental shelf. Mem Soc R Sci Liege 10(6):141–164

    Google Scholar 

  • Heaps NS (1978) Linearized vertically integrated equations for residual circulation in coastal seas. Dtsch Hydrogr Z 31:147–169

    Article  Google Scholar 

  • Howrath MJ, Pugh DT (1983) Observations of tides over the continental shelf of northwest Europe. In: Johns D (ed) Physical oceanography of coastal and shelf seas. Elsevier, New York, pp 135–185

    Google Scholar 

  • Hunter JR (1979) On the interaction of M\(_2\) and M\(_4\) tidal velocities in relation to quadratic and higher power laws. Dtsch Hydrogr Z 22:146–153

    Article  Google Scholar 

  • Jones JE, Davies AM (1996) A high-resolution, three-dimensional model of the M\(_2\), M\(_4\), M\(_6\), S\(_2\), N\(_2\), K\(_1\), and O\(_1\) tides in the Irish Sea. Estuar Coast Shelf Sci 42:311–346

    Article  Google Scholar 

  • Kabbaj A, Le Provost C (1980) Non-linear tidal wave in channels: a pertubation method adapted to the importance of quadratic bottom friction. Tellus 32:143–163

    Article  Google Scholar 

  • Kwong SCM, Davies AM, Flather RA (1997) A three-dimensional model of the principal tides on the European Shelf. Prog Oceanogr 39:205–262

    Article  Google Scholar 

  • Le Provost C (1973) Décomposition spectrale du terme quadratique de frottement dans les équations des marées littorales. C R Acad Sci A 276:571–574 and 653–656

    Google Scholar 

  • Le Provost C (1974) Contribution à l’etude des marées dans les mers littorales. Application à la Manche. Thèse d’état, Grenoble, p 228

    Google Scholar 

  • Le Provost C (1976) Theoretical analysis of the tidal wave spectrum in shallow water areas. Mem Soc R Sci Liege 10:97–111

    Google Scholar 

  • Le Provost C (1991) Generation of overtides and compound tides (review). In: Parker BB (ed) Tidal hydrodynamics. Wiley, pp 263–295

  • Le Provost C (2001) Chapter 6: ocean tides. In: Fu L-L, Cazenave A (eds) Satellite altimetry and earth sciences. Academic, London, pp 267–304

    Google Scholar 

  • Le Provost C, Fornerino M (1985) Tidal spectroscopy of the English Channel with a numerical model. J Phys Oceanogr 15:1009–1031

    Article  Google Scholar 

  • Le Provost C, Poncet A (1977) Sur une méthode numérique pour calculer les marées océaniques et littorales. C R Acad Sci B 285:349–352

    Google Scholar 

  • Le Provost C, Genco ML, Lyard F, Vincent P, Canceil P (1994) Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res 99:24777–24798

    Article  Google Scholar 

  • Le Provost C, Poncet A (1978) Finite-element method for spectral modeling of tides. Int J Numer Methods Eng 12:853–871

    Google Scholar 

  • Le Provost C, Rougier G, Poncet A (1981) Numerical modelling of the harmonic constituents of the tides with application to the English Channel. J Phys Oceanogr 11:123–138

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: a modern insight from FES2004. Ocean Dynamics (ibid)

  • Munk WH, Cartwright DE (1966) Tidal spectroscopy and prediction. Philos Trans R Soc Lond A 259:533–583

    Google Scholar 

  • Parke ME, Stewart RH, Farless DL, Cartwright DE (1987) On the choice of orbits for an altimetric satellite to study ocean circulation and tides. J Geophys Res 92(C11):11693–11707

    Article  Google Scholar 

  • Parker BB (1991) The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions (review). In: Parker BB (ed) Tidal hydrodynamics. Wiley, pp 263–295

  • Pingree RD, Maddock L (1978) The M\(_4\) tide in the English Channel derived from a nonlinear numerical model of the M\(_2\) tide. Deep-Sea Res 25:52–63

    Google Scholar 

  • Ponchaut F, Lyard F, Le Provost C (2001) An analysis of the tidal signal in the WOCE sea level dataset. J Atmos Ocean Technol 18:77–91

    Article  Google Scholar 

  • Prandle D (1997) Tidal currents in shelf seas—their nature and impacts. Prog Oceanogr 40:245–261

    Article  Google Scholar 

  • Ray RD (1997) Spectral analysis of highly aliased sea-level signals. J Geophys Res 103:24991–25003

    Article  Google Scholar 

  • Shum CK, Woodworth PL, Andersen OB, Egbert GD, Francis O, King C, Klosko SM, Le Provost C, Li X, Molines JM, Parke M, Ray RD, Schlax M, Stammer D, Tierney C, P Vincent P, Wunch C (1997) Accuracy assessment of recent ocean tide models. J Geophys Res 102(C11):25173–25194

    Article  Google Scholar 

  • Sinha B, Pingree RD (1997) The principal lunar semidiurnal tide and its harmonics: baseline solutions for M\(_2\) and M\(_4\) constituents on the northwest European continental shelf. Cont Shelf Res 17:1321–1365

    Article  Google Scholar 

  • Smithson MJ (1992) Pelagic tidal constants—3. Int Assoc Phys Sci Oceans 35:191

    Google Scholar 

  • Walters RA (1987) A numerical model for tides and currents in the English Channel and the southern North Sea. Adv Water Resour 10:138–148

    Article  Google Scholar 

  • Walters RA, Werner FE (1991) Nonlinear generation of overtides, compound tides, and residuals. In: Parker BB (ed) Tidal hydrodynamics. Wiley, New York, pp 297–320

    Google Scholar 

  • Werner FE, Lynch DR (1989) Harmonic structure of English Channel/Southern Bight tides from a wave equation simulation. Adv Water Resour 12:121–142

    Article  Google Scholar 

  • Zelter BD, Cummings RA (1967) A harmonic method for predicting shallow-water tides. J Mar Res 25:103–114

    Google Scholar 

Download references

Acknowledgments

We are indebted to Florent Lyard and Fabian Lefèvre for use of the FES2004 tidal solution before publication. We thank Philip Woodworth and several reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole B. Andersen.

Additional information

Responsible editor: Phil Woodworth

In memory of Christian Le Provost

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, O.B., Egbert, G.D., Erofeeva, S.Y. et al. Mapping nonlinear shallow-water tides: a look at the past and future. Ocean Dynamics 56, 416–429 (2006). https://doi.org/10.1007/s10236-006-0060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-006-0060-7

Keywords

Navigation