Skip to main content
Log in

Monotonicity and one-dimensional symmetry of solutions for fractional reaction-diffusion equations and various applications of sliding methods

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper, we obtain monotonicity and one-dimensional symmetry of entire solutions to fractional reaction-diffusion equations by introducing a sliding method, and thus prove the Gibbons conjecture for entire solutions to fractional parabolic equations. After establishing key ingredients such as a generalized weighted average inequality and maximum principles in unbounded domains, we demonstrate how these new ideas and tools can be employed in carrying out the sliding method to derive monotonicity and one-dimensional symmetry of entire solutions to fractional parabolic equations. We also compare the sliding method with the method of moving planes and list several other interesting applications of the former such as deriving a uniform lower bound for solutions in unbounded domains by sliding centers of balls along a desired path and proving the non-existence of solutions for certain fractional inequalities by sliding the graphs of functions up and down. We believe that these new ideas and methods introduced here can be employed to study many other nonlocal equations, both elliptic and parabolic, with wider range of fractional operators and more general nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Modern Phys. 74(1), 99–143 (2002)

    MathSciNet  Google Scholar 

  2. Arecchi, F.T., Boccaletti, S., Ramazza, P.: Pattern formation and competition in nonlinear optics. Phys. Rep. 318, 1–83 (1999)

    Google Scholar 

  3. Barlow, M.T., Bass, R.F., Gui, C.F.: The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math. 53(8), 1007–1038 (2000)

    MathSciNet  Google Scholar 

  4. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.) 22(1), 1–37 (1991)

    MathSciNet  Google Scholar 

  5. Berestycki, H., Nirenberg, L.: Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations. J. Geom. Phys. 5(2), 237–275 (1988)

    MathSciNet  Google Scholar 

  6. Bertoin, J.: Lévy Processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  7. Bouchard, J.P., Georges, A.: Anomalous diffusion in disordered media, statistical mechanics, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    MathSciNet  Google Scholar 

  8. Cabré, X., Cinti, E.: Sharp energy estimates for nonlinear fractional diffusion equations. Calc. Var. Partial Differ. Equ. 49(1–2), 233–269 (2014)

    MathSciNet  Google Scholar 

  9. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367(2), 911–941 (2015)

    MathSciNet  Google Scholar 

  10. Cabré, X., Solà-Morales, J.: Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 58(12), 1678–1732 (2005)

    MathSciNet  Google Scholar 

  11. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32, 1245–1260 (2007)

    MathSciNet  Google Scholar 

  12. Caffarelli, L., Vasseur, L.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)

    MathSciNet  Google Scholar 

  13. Chen, L., Liu, Z., Lu, G.Z.: Symmetry and regularity of solutions to the weighted Hardy-Sobolev type system. Adv. Nonlinear Stud. 16(1), 1–13 (2016)

    MathSciNet  Google Scholar 

  14. Chen, W.X., Li, C.M., Li, Y.: A direct method of moving planes for the fractional Laplacian. Adv. Math. 308, 404–437 (2017)

    MathSciNet  Google Scholar 

  15. Chen, W.X., Li, Y., Zhang, R.B.: A direct method of moving spheres on fractional order equations. J. Funct. Anal. 272(10), 4131–4157 (2017)

    MathSciNet  Google Scholar 

  16. Chen, W.X., Wang, P.Y., Niu, Y.H., Hu, Y.Y.: Asymptotic method of moving planes for fractional parabolic equations. Adv. Math. 377, 107463 (2021)

    MathSciNet  Google Scholar 

  17. Chen, W.X., Wu, L.Y.: Liouville theorems for fractional parabolic equations. Adv. Nonlinear Stud. 21, 939–958 (2021)

    MathSciNet  Google Scholar 

  18. Chen, W.X., Wu, L.Y., Wang, P.Y.: Nonexistence of solutions for indefinite fractional parabolic equations. Adv. Math. 392, 108018 (2021)

    MathSciNet  Google Scholar 

  19. Constantin, P.: Euler equations, Navier-Stokes equations and turbulence, in: Mathematical Foundation of Turbulent Viscous Flows, In: Lecture Notes in Math., vol. 1871, Springer, Berlin, pp. 1–43 (2006)

  20. De Giorgi, E.: “Convergence problems for functionals and operators" In: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 131-188. (1979)

  21. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    MathSciNet  Google Scholar 

  22. Dipierro, S., Soave, N., Valdinoci, E.: On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results. Math. Ann. 369, 1283–1326 (2017)

    MathSciNet  Google Scholar 

  23. Dou, J.B., Guo, Q.Q., Zhu, M.J.: Subcritical approach to sharp hardy-littlewood-Sobolev type inequalities on the upper half space. Adv. Math. 312, 1–45 (2017)

    MathSciNet  Google Scholar 

  24. Dou, J.B., Zhu, M.J.: Nonlinear integral equations on bounded domains. J. Funct. Anal. 277(1), 111–134 (2019)

    MathSciNet  Google Scholar 

  25. Farina, A.: Symmetry for solutions of semilinear elliptic equations in \({\mathbb{R} }^N\) and related conjectures. Papers in memory of Ennio De Giorgi (Italian). Ricerche Mat. 48, 129–154 (1999)

    MathSciNet  Google Scholar 

  26. Farina, A., Alberto, E., Valdinoci: Rigidity results for elliptic PDEs with uniform limits: An abstract framework with applications. Indiana Univ. Math. J 60(1), 121–141 (2011)

    MathSciNet  Google Scholar 

  27. Fernández-Real, X., Ros-Oton, X.: Regularity theory for general stable operators: parabolic equations. J. Funct. Anal. 272(10), 4165–4221 (2017)

    MathSciNet  Google Scholar 

  28. Frank, T.D.: Nonlinear Fokker-Planck equations: fundamentals and applications. Springer-Verlag, Berlin-Heidelberg (2005)

    Google Scholar 

  29. Ghoussoub, N., Gui, C.: On a conjecture of De Giorgi and some related problems. Math. Ann. 311(3), 481–491 (1998)

    MathSciNet  Google Scholar 

  30. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68(3), 209–243 (1979)

    MathSciNet  Google Scholar 

  31. Ginzburg, V. L., Landau, L. D.: On the Theory of Superconductivity, Zh. Éksp. Teor. Fiz., 20 (1950) 1064-1082 (in Russian); English translation in: Men of Physics, vol.1, Pergamon Press, Oxford, 1965, pp. 138–167

  32. Gilding, B.H., Kersner, R.: Travelling waves in nonlinear diffusion-convection reaction. Springer Science & Business Media (2004)

    Google Scholar 

  33. Guo, Q.Q.: Blowup analysis for integral equations on bounded domains. J. Differ. Equ. 266(12), 8258–8280 (2019)

    MathSciNet  Google Scholar 

  34. Ma, L.W., Zhang, Z.Q.: Monotonicity of positive solutions for fractional p-systems in unbounded Lipschitz domains. Nonlinear Anal. 198, 111892 (2020)

    MathSciNet  Google Scholar 

  35. Ma, L.W., Zhang, Z.Q.: Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete Contin. Dyn. Syst. 41(2), 537–552 (2021)

    MathSciNet  Google Scholar 

  36. Milovanov, A., Rasmussen, J.: Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. A 337, 75–80 (2005)

    Google Scholar 

  37. Mvogo, A., Tambue, A., Ben-Bolie, G., Kofane, T.: Localized numerical impulses solutions in diffuse neural networks modeled by the complex fractional Ginzburg-Landau equation. Commun. Nonlinear Sci. Numer. Simul. 39, 396–410 (2016)

    MathSciNet  Google Scholar 

  38. Inc, M., Aliyu, A.I., Yusuf, A., Baleanu, D.: Optical solitons for complex Ginzburg-Landau model in nonlinear optics. Optik 158, 368–375 (2018)

    Google Scholar 

  39. Jin, T.L.: Symmetry and nonexistence of positive solutions of elliptic equations and systems with Hardy terms. Ann. Inst. H. Poincaré C Anal. Non Linéaire 28(6), 965–981 (2011)

    MathSciNet  Google Scholar 

  40. Li, J. G., Lu, G. Z., Wang, J. X.: Symmetry of solutions to higher and fractional order semilinear equations on hyperbolic spaces, arXiv:2210.02278, (2022)

  41. Li, Y.Y., Zhu, M.J.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80(2), 383–417 (1995)

    MathSciNet  Google Scholar 

  42. Liu, Z.: Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains. J. Differ. Equ. 270, 1043–1078 (2021)

    MathSciNet  Google Scholar 

  43. Newell, A.C., Whitehead, J.A.: Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38(2), 279–303 (1969)

    MathSciNet  Google Scholar 

  44. Poláčik, P.: Symmetry properties of positive solutions of parabolic equations on \({\mathbb{R}}^N\). I. Asymptotic symmetry for the Cauchy problem. Comm. Partial Differ. Equ. 30(10–12), 1567–1593 (2005)

    Google Scholar 

  45. Poláčik, P.: Symmetry properties of positive solutions of parabolic equations on \({\mathbb{R} }^N\). II. Entire solutions. Comm. Partial Differ. Equ. 31(10–12), 1615–1638 (2006)

    Google Scholar 

  46. Rosanov, N.N.: Transverse patterns in wide-aperture nonlinear optical systems. Prog. Opt. 35, 1–60 (1996)

    Google Scholar 

  47. Rosanov, N.N.: Spatial Hysteresis and Optical Patterns. Springer-Verlag, Berlin (2002)

    Google Scholar 

  48. Segel, L.A.: Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38(1), 203–224 (1969)

    Google Scholar 

  49. Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55, 1155–1174 (2006)

    MathSciNet  Google Scholar 

  50. Tarasov, V., Zaslasvky, G.: Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11(8), 885–889 (2006)

    MathSciNet  Google Scholar 

  51. Tarasov, V., Zaslavsky, G.: Fractional dynamics of coupled oscillators with long-range interaction. Chaos 16, 023110 (2006)

    MathSciNet  Google Scholar 

  52. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edition, Springer Series in Computational Mathematics, vol. 25. Springer, Berlin, Heidelberg (1997)

    Google Scholar 

  53. Wilhelmsson, H., Lazzaro, E.: Reaction-diffusion problems in the physics of hot plasmas. Institute of Physics Publishing, Bristol and Philadelphia (2001)

    Google Scholar 

  54. Williams, F.A.: Combustion theory. CRC Press, UK (2018)

    Google Scholar 

  55. Wu, L.Y., Chen, W.X.: Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities (in Chinese). Sci. Sin. Math. 52, 1–22 (2022)

    Google Scholar 

  56. Wu, L.Y., Chen, W.X.: The sliding methods for the fractional p-Laplacian. Adv. Math. 361, 106933 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the referee for his/her valuable comments, which help us considerably improve the precision and exposition of this paper. The research of Wenxiong Chen was partially supported by Simons Foundation 847690 and NSFC Grants 12071229. The research of Leyun Wu was partially supported by NSFC Grants 12031012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wu, L. Monotonicity and one-dimensional symmetry of solutions for fractional reaction-diffusion equations and various applications of sliding methods. Annali di Matematica 203, 173–204 (2024). https://doi.org/10.1007/s10231-023-01357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-023-01357-4

Keywords

Mathematics Subject Classification

Navigation