Skip to main content
Log in

The \(\kappa \)-nullity of Riemannian manifolds and their splitting tensors

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We consider Riemannian n-manifolds M with nontrivial \(\kappa \)-nullity “distribution” of the curvature tensor R, namely, the variable rank distribution of tangent subspaces to M where R coincides with the curvature tensor of a space of constant curvature \(\kappa \) (\(\kappa \in \mathbb {R}\)) is nontrivial. We obtain classification theorems under diferent additional assumptions, in terms of low nullity/conullity, controlled scalar curvature or existence of quotients of finite volume. We prove new results, but also revisit previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aazami, A.B., Melby-Thompson, C.M.: On the principal Ricci curvatures of a Riemannian \(3\)-manifold. Adv. Geom. 19(2), 251–262 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burde, D., Ceballos, M.: Abelian ideals of maximal dimension for solvable Lie algebras. J. Lie Theory 22(3), 741–756 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Boeckx, E., Kowalski, O., Vanhecke, L.: Riemannian manifolds of conullity two. World Scientific Publishing Co., Inc, River Edge, NJ (1996)

    Book  MATH  Google Scholar 

  4. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds, second ed., Progress in Mathematics, vol. 203, Birkhäuser Boston, Ltd., Boston, MA, 2682326 (2010)

  5. Bock, C.:On formality and solvmanifolds, Ph.D. thesis, University of Cologne, (2009)

  6. Brooks, TG.: Riemannian geometry of the curvature tensor, Ph.D. thesis, University of Pennsylvania, (2018)

  7. Brooks, T.G.: Nonnegative curvature and conullity of the curvature tensor, Ann. Global Anal. Geom, 555–566 (2019)

  8. Brooks, TG.: \(3\)-manifolds with constant Ricci eigenvalues\((\lambda ,\lambda ,0)\), E-print arXiv:2111.15499 [math.DG], (2021)

  9. Blair, D., Vanhecke, L.: Symmetries and \(\varphi \)-symmetric spaces. Tohoku Math. J. 2(393), 373–383 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Canevari, S., de Freitas, G.M., Guimarães, F., Manfio, F., dos Santos, J. P.: Complete submanifolds with relative nullity in space forms, Ann. Global Anal. Geom. 591, 81–92. 4198710 (2021)

  11. Chern, S.-S., Kuiper, N.H.: Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. Math. (2) 56, 422–430. 50962 (1952)

  12. Dearricott, O.: \(n\)-Sasakian manifolds. Tohoku Math. J. 2(603), 329–347 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Dearricott, O.: Lectures on\(n\)-Sasakian manifolds, Geometry of manifolds with non-negative sectional curvature, Lecture Notes in Math., vol. 2110, Springer, Cham, pp. 57–109 (2014)

  14. Di Scala, A.J., Olmos, C., Vittone, F.: Homogeneous manifolds with nontrivial nullity. Transform. Groups 27(1), 31–72 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Scala, A.J., Olmos, C., Vittone, F.: The structure of homogeneous Riemannian manifolds with nullity, E-print arXiv:2207.01746 [math.DG], (2022)

  16. Dajczer, M., Tojeiro, R.: Submanifold theory. beyond an introduction, Universitext, Springer, New York, (2019)

  17. Ferus, D.: Totally geodesic foliations. Math. Ann. 188, 313–316 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Filipkiewicz, R.:Four dimensional geometries, Ph.D. thesis, Warwick University, (1983)

  19. Florit, L., Ziller, W.: Manifolds with conullity at most two as graph manifolds. Ann. Sci. École Norm. Sup. 4(535), 1313–1333 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gray, A.: Spaces of constancy of curvature operators, Proc. Amer. Math. Soc. 17 , 897–902. 198392 (1966)

  21. Griffiths, P.: On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math. J. 41, 775–814 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Harshavardhan, R.:Geometric structures of Lie type on\(5\)-manifolds, Ph.D. thesis, Cambridge University, (1996)

  23. Kobayashi, S., Nomizu, K.:Foundations of differential geometry, vol. I, Wiley Interscience Publishers, (1963)

  24. Kowalski, O., Tricerri, F., Vanhecke, L.: Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl. 9(716), 471–501 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Maltz, R.:The nullity spaces of curvature-like tensors, J. Differential Geom. 7 , 519–523. 322740 (1972)

  26. Milnor, J.: Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 3, 293–329. 425012 (1976)

  27. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol. 91, p. 1867362. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  28. Mostow, G.D.: Homogeneous spaces with finite invariant measure. Ann. Math. 75(1), 17–37 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moroianu, A., Semmelmann, U.: Clifford structures on Riemannian manifolds. Adv. Math. 228(2), 940–967 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ôtsuki, T.: Isometric imbedding of Riemann manifolds in a Riemann manifold. J. Math. Soc. Japan 6, 221–234 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  31. Perrone, D.: Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 422, 243–256. 1612747 (1998)

  32. Rosenthal, A.: Riemmanian manifolds of constant nullity, Michigan Math. J. 14, 469–480. 220216 (1967)

  33. Rosenthal, A.: Riemannian manifolds of constant \(k\)-nullity. Proc. Amer. Math. Soc. 22, 473–475 (1969)

    MathSciNet  MATH  Google Scholar 

  34. Rukimbira, P.: The 1-nullity of Sasakian manifolds, Riemannian topology and geometric structures on manifolds, Progr. Math., vol. 271, Birkhäuser Boston, Boston, MA, pp. 153–159. 2494172 (2009)

  35. Sekigawa, K.: On some hypersurfaces satisfying \(R(X, Y)\cdot R= 0\). Tensor 25, 133–136 (1972)

    MathSciNet  MATH  Google Scholar 

  36. Sekigawa, K.:On the Riemannian manifolds of the form\(B\times _f F\), K\(\bar{o}\)dai Math. Sem. Rep. 26, 343–347 (1974/75)

  37. Schmidt, B., Wolfson, J.: Three-manifolds with constant vector curvature. Indiana Univ. Math. J. 63(6), 1757–1783 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schmidt, B., Wolfson, J.: Three-manifolds of constant vector curvature one. C. R. Math. Acad. Sci. Paris 355(4), 460–463 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Szabó, Z.I. Structure theorems on riemannian spaces satisfying\(R(X, Y )\cdot R = 0\), ii. global versions, Geom. Dedicata 191, 65–108 (1985)

  40. Takagi, H.: An example of Riemannian manifolds satisfying \(R(X, Y)\cdot R=0\) but not \(\nabla R=0\). Tohoku Math. J. 2(24), 105–108 (1972)

    MathSciNet  MATH  Google Scholar 

  41. Takagi, H.: On curvature homogeneity of Riemannian manifolds. Tohoku Math. J. 2(26), 581–585 (1974)

    MathSciNet  MATH  Google Scholar 

  42. Takahashi, T.: Sasakian \(\varphi \)-symmetric spaces. Tohoku Math. J. 2(291), 91–113 (1977)

    MathSciNet  MATH  Google Scholar 

  43. Vittone, F.: On the nullity distribution of a submanifold of a space form. Math. Z. 1–16(2968211), 2721–2 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Watanabe, Y.: Geodesic symmetries in Sasakian locally \(\varphi \)-symmetric spaces. Kodai Math. J. 3(1), 48–55 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yamato, K.: A characterization of locally homogeneous Riemann manifolds of dimension 3. Nagoya Math. J. 123, 77–90 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felippe Guimarães.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first named author has been partially supported by the grant number 302882/2017-0 from the National Council for Scientific and Technological Development (CNPq, Brazil) and the project number 2016/23746-6 from the São Paulo Research Foundation (Fapesp, Brazil).

The second named author has been supported by the post-doctoral grant 2019/19494-0 from the São Paulo Research Foundation (Fapesp, Brazil).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorodski, C., Guimarães, F. The \(\kappa \)-nullity of Riemannian manifolds and their splitting tensors. Annali di Matematica 202, 2561–2583 (2023). https://doi.org/10.1007/s10231-023-01330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-023-01330-1

Mathematics Subject Classification

Navigation