Skip to main content
Log in

Positive flow-spines and contact 3-manifolds

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

A flow-spine of a 3-manifold is a spine admitting a flow that is transverse to the spine, where the flow in the complement of the spine is diffeomorphic to a constant flow in an open ball. We say that a contact structure on a closed, connected, oriented 3-manifold is supported by a flow-spine if it has a contact form whose Reeb flow is a flow of the flow-spine. It is known by Thurston and Winkelnkemper that any open book decomposition of a closed oriented 3-manifold supports a contact structure. In this paper, we introduce a notion of positivity for flow-spines and prove that any positive flow-spine of a closed, connected, oriented 3-manifold supports a contact structure uniquely up to isotopy. The positivity condition is critical to the existence of the unique, supported contact structure, which is also proved in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. The positivity for flow-spines introduced in this paper is different from the one introduced in [19].

References

  1. Benedetti, R., Petronio, C.: Branched Standard Spines of 3-Manifolds. Lecture Notes in Mathematics, vol. 1653. Springer, Berlin (1997)

  2. Benedetti, R., Petronio, C.: Branched spines and contact structures on 3-manifolds. Ann. Mat. Pure Appl. 178(4), 81–102 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennequin, D.: Entrelacements et équations de Pfaff. Astérique 107–108, 87–161 (1983)

    MATH  Google Scholar 

  4. Colin, V., Giroux, E., Honda, K.: Finitude homotopique et isotopique des structures de contact tendues. Publ. Math. Inst. Hautes Études Sci. 109, 245–293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eliashberg, Y.: Classification of overtwisted contact structures on 3-manifolds. Invent. Math. 98(3), 623–637 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eliashberg, Y.: Filling by Holomorphic Discs and Its Applications, Geometry of Low-Dimensional Manifolds, 2 (Durham, 1989). London Mathematical Society Lecture Note Series, vol. 151, pp. 45–67. Cambridge University Press, Cambridge (1990)

  7. Eliashberg, Y.: Contact 3-manifolds twenty years since J. Martinet’s work. Ann. Inst. Fourier Grenoble 42, 165–192 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eliashberg, Y., Thurston, W.: Confoliations, University Lecture Series 13. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  9. Endoh, M., Ishii, I.: A new complexity for 3-manifolds. Jpn. J. Math. N.S. 31, 131–156 (2005)

  10. Etnyre, J.B.: Lectures on Open Book Decompositions and Contact Structures, Floer Homology, Gauge Theory, and Low-Dimensional Topology, pp. 103–141. Clay Mathematical Proceedings, vol. 5. American Mathematical Society, Providence (2006)

  11. Geiges, H.: An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, vol. 109. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  12. Giroux, E.: Convexité en topologie de contact. Comment. Math. Helvetici 66, 637–677 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giroux, E.: Géométrie de contact: de la dimension trois vers les dimensions supérieures, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 405–414. Higher Ed. Press, Beijing (2002)

  14. Gray, J.W.: Some global properties of contact structures. Ann. Math. 2(69), 421–450 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ikeda, H.: Acyclic fake surfaces. Topology 10, 9–36 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ikeda, H.: Acyclic fake surfaces which are spines of 3-manifolds. Osaka Math. J. 9, 391–408 (1972)

    MathSciNet  MATH  Google Scholar 

  18. Ikeda, H., Inoue, Y.: Invitation to DS-diagram. Kobe J. Math. 2, 169–186 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Ishii, I.: Flows and spines. Tokyo J. Math. 9, 505–525 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ishii, I.: Moves for flow-spines and topological invariants of \(3\)-manifolds. Tokyo J. Math. 15, 297–312 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Koda, Y.: Branched spines and Heegaard genus of 3-manifolds. Manuscr. Math. 123(3), 285–299 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lutz, R.: Structures de contact sur les fibre’s principaux en cercles de dimension 3. Ann. Inst. Fourier 27–3, 1–15 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martinet, J.: Formes de contact sur les variétiés de dimension 3. Lect. Notes Math. 209, 142–163 (1971)

    Article  MATH  Google Scholar 

  24. Matveev, S.: Algorithmic Topology and Classification of 3-Manifolds, Algorithms and Computation in Mathematics, vol. 9. Springer, Berlin (2003)

    Google Scholar 

  25. Ozbagci, B., Stipsicz, A.I.: Surgery on Contact 3-Manifolds and Stein Surfaces. Bolyai Society Mathematical Studies, vol. 13. Springer (2004)

  26. Petronio, C.: Generic flows on \(3\)-manifolds. Kyoto J. Math. 55(1), 143–167 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Thurston, W., Winkelnkemper, H.: On the existence of contact forms. Proc. Am. Math. Soc. 52, 345–347 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Ishikawa.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, I., Ishikawa, M., Koda, Y. et al. Positive flow-spines and contact 3-manifolds. Annali di Matematica 202, 2091–2126 (2023). https://doi.org/10.1007/s10231-023-01314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-023-01314-1

Keywords

Mathematics Subject Classification

Navigation