Skip to main content
Log in

Translators of flows by powers of the Gauss curvature

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

A \(K^{\alpha}\)-translator is a surface in Euclidean space \({\mathbb {R}}^3\) that moves by translations in a spatial direction under the \(K^{\alpha}\)-flow, where K is the Gauss curvature and \(\alpha\) is a constant. We classify all \(K^{\alpha}\)-translators that are rotationally symmetric. In particular, we prove that for each \(\alpha\) there is a \(K^{\alpha}\)-translator intersecting orthogonally the rotation axis. We also describe all \(K^{\alpha}\)-translators invariant by a uniparametric group of helicoidal motions and the translators obtained by separation of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chow, B.: Deforming convex hypersurfaces by the nth root of the Gaussian curvature. J. Differ. Geom. 22, 117–138 (1985)

    MATH  Google Scholar 

  2. Firey, W.J.: Shapes of worn stones. Mathematika 21, 1–11 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tso, K.: Deforming a hypersurface by its Gauss-Kronecker curvature. Comm. Pure Appl. Math. 38, 867–882 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrews, B.: Contraction of convex hypersurfaces in Euclidean space. Calc. Var. Partial Differ. Eq. 2, 151–171 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Urbas, J.: An expansion of convex hypersurfaces. J. Differ. Geom. 33, 91–125 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138, 151–161 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Urbas, J.: Complete noncompact self-similar solutions of Gauss curvature flows, I: positive powers. Math. Ann. 311, 251–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, K., Daskalopoulos, P., Lee, K.A.: Translating solutions to the Gauss curvature flow with flat sides. Anal. PDE 14, 595–616 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, H.: Isometric deformations of the \(K^{1/4}\)-flow translators in \(R^3\) with helicoidal symmetry. C. R. Math. Acad. Sci. Paris 351, 477–482 (2013)

    Article  MathSciNet  Google Scholar 

  10. Darboux, G., Leçons sur la Théorie Générale des Surfaces et ses Applications Géométriques du Calcul Infinitésimal, vol. 1–4. Chelsea Publ. Co, reprint, (1972)

  11. Andrews, B.: Contraction of convex hypersurfaces by their affine normal. J. Differ. Geom. 43, 207–230 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Calabi, E.: Hypersurfaces with maximal affinely invariant area. Am. J. Math. 104, 91–126 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cermelli, O., Di Scala, A.J.: Constant-angle surfaces in liquid crystals. Philos. Mag. 87, 1871–1888 (2007)

    Article  Google Scholar 

  14. Munteanu, M.I., Nistor, A.-I.: A new approach on constant angle surfaces in \(E^3\). Turkish J. Math. 33, 169–178 (2009)

    MathSciNet  Google Scholar 

  15. Ju, H., Bao, J., Jian, H.: Existence for translating solutions of Gauss curvature flow on exterior domains. Nonlinear Anal. Theory Methods Appl. 75, 3629–3640 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Caffarelli, L.: Interior \(W^{2, p}\) estimates for solutions of the Monge-Ampère equation. Ann. Math. 131, 135–150 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Second edition, Springer-Verlag, (1983)

  18. Urbas, J.: Complete noncompact self-similar solutions of Gauss curvature flows, II: negative powers. Adv. Differ. Equ. 4(3), 323–346 (1999)

    MathSciNet  MATH  Google Scholar 

  19. do Carmo, M.P., Dajczer, M.: Helicoidal surfaces with constant mean curvature. Tohoku Math. J 34, 425–435 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author (R. López) is a member of the Institute of Mathematics of the University of Granada. This work has been partially supported by the Projects I+D+i PID2020-117868GB-I00, A-FQM-139-UGR18 and P18-FR-4049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael López.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, M.E., López, R. Translators of flows by powers of the Gauss curvature. Annali di Matematica 202, 235–251 (2023). https://doi.org/10.1007/s10231-022-01239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01239-1

Keywords

Mathematics Subject Classification

Navigation