Skip to main content
Log in

Convergence of solutions of variational problems with measurable bilateral constraints in variable domains

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We give conditions for the convergence of minimizers and minimum values of integral and more general functionals \(J_s:W^{1,p}(\Omega_s)\rightarrow {\mathbb{R}}\) on sets of functions defined by a measurable lower constraint \(\varphi :\Omega \rightarrow \overline{\mathbb{R}}\) and a measurable upper constraint \(\psi :\Omega \rightarrow \overline{{\mathbb{R}}}\), where \(\Omega \) is a bounded domain in \({\mathbb{R}}^n\) (\(n\geqslant 2\)), \(\{\Omega_s\}\) is a sequence of domains in \({\mathbb{R}}^n\) contained in \(\Omega \), and \(p>1\). These conditions include the \(\Gamma \)-convergence of the functionals under consideration and some requirements on the domains \(\Omega _s\). As for the constraints \(\varphi \) and \(\psi \), we consider two cases. In the first case, we assume that there exist functions \(\bar{\varphi },\bar{\psi }\in W^{1,p}(\Omega )\) such that \(\varphi \leqslant \bar{\varphi }<\bar{\psi }\leqslant \psi \) a.e. in \(\Omega \). In the second case, we assume that there exists a function \(\beta \in W^{1,p}(\Omega )\) satisfying the inequality \(\varphi \leqslant \beta \leqslant \psi \) a.e. in \(\Omega \) and interacting with the integrands of the main components of the functionals \(J_s\) in a special way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amaziane, B., Goncharenko, M., Pankratov, L.: \(\Gamma _D\)-convergence for a class of quasilinear elliptic equations in thin structures. Math. Methods Appl. Sci. 28(15), 1847–1865 (2005)

    Article  MathSciNet  Google Scholar 

  2. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization, 2nd edn. SIAM, Philadelphia (2014)

  3. Attouch, H., Picard, C.: Variational inequalities with varying obstacles: the general form of the limit problem. J. Funct. Anal. 50(3), 329–386 (1983)

    Article  MathSciNet  Google Scholar 

  4. Dal Maso, G.: Asymptotic behaviour of minimum problems with bilateral obstacles. Ann. Mat. Pura Appl. (4) 129(1), 327–366 (1981)

  5. Dal Maso, G.: \(\Gamma \)-convergence and \(\mu \)-capacities. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 14(3), 423–464 (1987)

  6. Dal Maso, G.: An Introduction to \({\Gamma }\)-Convergence. Birkhäuser, Boston (1993)

    Book  Google Scholar 

  7. Dal Maso, G., Longo, P.: \(\Gamma \)-limits of obstacles. Ann. Mat. Pura Appl. (4) 128(1), 1–50 (1981)

  8. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (8) 58(6), 842–850 (1975)

  9. Khruslov, E.Ya.: The asymptotic behavior of solutions of the second boundary value problem under fragmentation of the boundary of the domain. Math. USSR-Sb. 35(2), 266–282 (1979)

  10. Kovalevskii, A.A.: Some problems connected with the problem of averaging variational problems for functionals with a variable domain. In: Mitropol’skii Yu.A. (ed.) Current Analysis and its Applications, pp. 62–70. Naukova Dumka, Kiev (1989) [in Russian]

  11. Kovalevskii, A.A.: On the connectedness of subsets of Sobolev spaces and the \(\Gamma \)-convergence of functionals with varying domain of definition. Nelinein. Granichnye Zadachi 1, 48–54 (1989). ([in Russian])

    Google Scholar 

  12. Kovalevskii, A.A.: On necessary and sufficient conditions for the \({\Gamma }\)-convergence of integral functionals with different domains of definition. Nelinein. Granichnye Zadachi 4, 29–39 (1992). ([in Russian])

    Google Scholar 

  13. Kovalevskii, A.A.: \(G\)-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain. Russ. Acad. Sci. Izv. Math. 44(3), 431–460 (1995)

    Google Scholar 

  14. Kovalevskii, A.A.: On the \(\Gamma \)-convergence of integral functionals defined on Sobolev weakly connected spaces. Ukr. Math. J. 48(5), 683–698 (1996)

    Article  Google Scholar 

  15. Kovalevsky, A.A.: On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains. Nonlinear Anal. 147, 63–79 (2016)

    Article  MathSciNet  Google Scholar 

  16. Kovalevsky, A.A.: On the convergence of solutions of variational problems with bilateral obstacles in variable domains. Proc. Steklov Inst. Math. 296(Suppl. 1), S151–S163 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kovalevsky, A.A.: On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions. Proc. Steklov Inst. Math. 305(Suppl. 1), S86–S101 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kovalevsky, A.A.: Variational problems with variable regular bilateral constraints in variable domains. Rev. Mat. Complut. 32(2), 327–351 (2019)

    Article  MathSciNet  Google Scholar 

  19. Kovalevsky, A.A.: On the convergence of solutions of variational problems with variable implicit pointwise constraints in variable domains. Ann. Mat. Pura Appl. (4) 198(4), 1087–1119 (2019)

  20. Kovalevsky, A.A., Rudakova, O.A.: Variational problems with pointwise constraints and degeneration in variable domains. Differ. Equ. Appl. 1(4), 517–559 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Murat, F.: Sur l’homogeneisation d’inequations elliptiques du 2ème ordre, relatives au convexe \(K(\psi _1,\psi _2)=\{v\in H^1_0(\Omega )\, | \,\psi _1\leqslant v\leqslant \psi _2\,\,\,{\rm p.\,p. \ dans}\,\,\,\Omega \}\). Publ. Laboratoire d’Analyse Numérique, No. 76013, 23 pp. Univ. Paris VI (1976)

  22. Pankratov, L.: \(\Gamma \)-convergence of nonlinear functionals in thin reticulated structures. C. R. Math. Acad. Sci. Paris 335(3), 315–320 (2002)

    Article  MathSciNet  Google Scholar 

  23. Vainberg, M.M.: Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. Wiley, New York (1974)

    Google Scholar 

  24. Velichkov, B.: Existence and Regularity Results for Some Shape Optimization Problems. Tesi. Scuola Normale Superiore, Pisa (2015)

    Book  Google Scholar 

  25. Yosifian, G.A.: Homogenization of some problems with rapidly oscillating constraints. J. Math. Sci. 120(3), 1353–1363 (2004)

    Article  MathSciNet  Google Scholar 

  26. Zhikov, V.V.: Questions of convergence, duality, and averaging for functionals of the calculus of variations. Math. USSR-Izv. 23(2), 243–276 (1984)

    Article  Google Scholar 

  27. Zhikov, V.V.: On passage to the limit in nonlinear variational problems. Russ. Acad. Sci. Sb. Math. 76(2), 427–459 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Kovalevsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalevsky, A.A. Convergence of solutions of variational problems with measurable bilateral constraints in variable domains. Annali di Matematica 201, 835–859 (2022). https://doi.org/10.1007/s10231-021-01140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01140-3

Keywords

Mathematics Subject Classification

Navigation