Abstract
A tensorial approach to the theory of classical Hamiltonian integrable systems is proposed, based on the geometry of Haantjes tensors. We introduce the class of symplectic-Haantjes manifolds (or \(\omega {\mathscr {H}}\) manifolds), as a natural setting where the notion of integrability can be formulated. We prove that the existence of suitable Haantjes algebras of (1,1) tensor fields with vanishing Haantjes torsion is a necessary and sufficient condition for a Hamiltonian system to be integrable in the Liouville–Arnold sense. We also show that new integrable models arise from the Haantjes geometry. Finally, we present an application of our approach to the study of the Post–Winternitz system and of a stationary flow of the KdV hierarchy.
Similar content being viewed by others
Change history
25 October 2021
A Correction to this paper has been published: https://doi.org/10.1007/s10231-021-01169-4
References
Aizawa, Y., Saito, N.: On the stability of isolating integrals, I. Effect of the perturbation in the potential function. J. Phys. Soc. Jpn. 32, 1636–1640 (1972)
Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (1997)
Benenti, S.: Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems. Acta Appl. Math. 87, 33–91 (2005)
Błaszak, M.: Multi-Hamiltonian Theory of Dynamical Systems, Texts and Monographs in Physics. Springer, Berlin (1998)
Bogoyavlenskij, O.I.: General algebraic identities for the Nijenhuis and Haantjes tensors. Izv. Math. 68, 1129–1141 (2004)
Bogoyavlenskij, O.I.: Schouten tensor and bi-Hamiltonian systems of hydrodynamic type. J. Math. Phys. 47(023504), 14 (2006)
Brouzet, R.: Systemes bihamiltoniens et complete integrabilite en dimension 4. C. R. Acad. Sci. Paris 311, 895–898 (1990)
Brouzet, R.: About the existence of recursion operators for completely integrable Hamiltonian systems near a Liouville torus. J. Math. Phys. 34, 1309–1313 (1993)
Chanu, C.M., Rastelli, G.: Block-separation of variables: a form of partial separation for natural Hamiltonians. SIGMA 15, 013 (2019)
Daudé, T., Kamran, N., Nicoleau, F.: Separability and symmetry operators for Painlevé metrics and their conformal deformation. SIGMA 15, 069 (2019)
Falqui, G., Magri, F., Tondo, G.: Bi-Hamiltonian systems and separation of variables: an example from the Boussinesq hierarchy. Theor. Math. Phys. 122, 176–192 (2000)
Falqui, G., Pedroni, M.: Separation of variables for bi-Hamiltonian systems. Math. Phys. Anal. Geom. 6, 139–179 (2003)
Ferapontov, E.V.: On the matrix Hopf equation and integrable Hamiltonian system of hydrodynamic type, which do not possess Riemann invariants. Phys. Lett. A 179, 391–397 (1993)
Ferapontov, E.V., Marshall, D.G.: Differential-geometric approach to the integrability of hydrodynamics chains: the Haantjes tensor. Mat. Ann. 339, 61–99 (2007)
Frolicher, A., Nijenhuis, A.: Theory of vector-valued differential forms. Part I. Indag. Math. 18, 338–359 (1956)
Gelfand, I.M., Zakharevich, I.: Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures. Selecta Math. 6, 131–183 (2000)
Gerdjikov, V.S., Vilasi, G., Yanovski, A.B.: Integrable Hamiltonian Hierarchies. Lecture Notes in Physics, vol. 748. Springer, Berlin (2008)
Haantjes, J.: On \(X_{n-1}\)-forming sets of eigenvectors. Indag. Math. 17, 158–162 (1955)
Kikuchi, K., Takeuchi, T.: Examples of 4-dimensional symplectic-Haantjes manifolds. SUT J. Math. 56, 93-108 (2020)
Kosmann-Schwarzbach, Y.: Beyond recursion operators. In: Kielonowski, P., Odzijewicz, A., Previato, E. (eds.) Trends in Mathematics, Geometric Methods in Physics XXXVI, Workshop and Summer School, Białowieża, Poland, July 2017. Birkhauser, Basel (2019)
Kosmann-Schwarzbach, Y., Magri, F.: Poisson–Nijenhuis structures. Ann. Inst. H. Poincaré Phys. Theor. 53, 3581 (1990)
Ibort, A., Magri, F., Marmo, G.: Bi-Hamiltonian structures and Stäckel separability. J. Geom. Phys. 33, 210–228 (2000)
Ibort, A., Marmo, G., Rodríguez, M.A., Tempesta, P.: Nilpotent integrability, reduction of dynamical systems and a third-order Calogero–Moser system. Ann. Mat. Pura Appl. (2019). https://doi.org/10.1007/s10231-019-00828-x
Landi, G., Marmo, G., Vilasi, G.: Recursion operators: meaning and existence for completely integrable systems. J. Math. Phys. 35, 800–815 (1994)
Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19(5), 1156–1162 (1978)
Magri, F.: A geometrical approach to nonlinear solvable equations. In: Boiti, M., Pempinelli, F., Soliani, G. (eds.) Lecture Notes in Physics, vol. 120, pp. 233–263. Springer, Berlin (1980)
Magri, F.: Geometry and soliton equations. Atti Accad. Sci. Torino Suppl. Phys. 124, 181–209 (1990)
Magri, F.: Lenard chains for classical integrable systems. Theor. Math. Phys. 137, 1716–1722 (2003)
Magri, F.: Recursion operators and Frobenius manifolds. SIGMA 8(076), 7 (2012)
Magri, F.: Haantjes manifolds. J. Phys. Conf. Ser. 482(012028), 10 (2014)
Magri, F.: WDVV Equations. Theor. Math. Phys. 189, 1486–1499 (2016), arXiv:1510.07950 (2015)
Magri, F.: Haantjes manifolds and Veselov Systems. Theor. Math. Phys. 189, 1486–1499 (2016)
Magri, F., Morosi, C.: Characterization of Integrable Systems through the Theory of Poisson–Nijenhuis Manifolds, Quaderno S 19, Università di Milano (1984)
Marsden, J.E., Ratiu, T.: Reduction of Poisson manifolds. Lett. Math. Phys. 11, 161–169 (1986)
McKean, H.P.: Compatible brackets in Hamiltonian mechanics. In: Fokas, T., Zakharov, V.E. (eds) Important Development in Soliton Theory. Springer Series in Nonlinear Dynamics, pp. 344–354. Springer, Berlin (1993)
Miller, W., Jr., Post, S., Winternitz, P.: Classical and quantum superintegrability with applications. J. Phys. A 46, 423001 (2013)
Morosi, C., Tondo, G.: Quasi-bi-Hamiltonian systems and separability. J. Phys. A 30, 2799–2806 (1997)
Morosi, C., Tondo, G.: On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian. Phys. Lett. A 247, 59–64 (1998)
Morosi, C., Tondo, G.: The quasi-bi-Hamiltonian formulation of the Lagrange top. J. Phys. A 35, 1741–1750 (2002)
Morosi, C., Tondo, G.: Separation of variables in multi-Hamiltonian systems: an application to the Lagrange top. Theor. Math. Phys. 137, 1550–1560 (2003)
Nijenhuis, A.: \(X_{n-1}\)-forming sets of eigenvectors. Indag. Math. 54, 200–212 (1951)
Nijenhuis, A.: Jacobi-type identities for bilinear differential concomitants of certain tensor fields I, II. Indag. Math. 17(390–397), 398–403 (1955)
Perelomov, A.M.: Integrable Systems of Classical Mechanics and Lie Algebras. Birkäuser, Basel (1990)
Post, S., Winternitz, P.: A non separable quantum superintegrable system in 2D real Euclidean space. J. Phys. A 44(162001), 8 (2011)
Praught, J., Smirnov, R.G.: Andrew Lenard: a mystery unraveled. SIGMA 1, 005 (2005)
Reyes, D., Tempesta, P., Tondo, G.: Classical Multiseparable Hamiltonian Systems, Superintegrability and Haantjes Geometry (2020). arXiv:2012.09819
Stäckel, P.: Ueber quadratische Integrale der Differentialgleichungen der Dynamik. Ann. Math. Pura Appl. 25, 55–60 (1897)
Tempesta, P., Tondo, G.: Generalized Lenard chains, separation and superintegrability. Phys. Rev. E 85(046602), 11 (2012)
Tempesta, P., Tondo, G.: Haantjes algebras and diagonalization. J. Geom. Phys. 160(103968), 21 (2021). arXiv:1710:04522
Tempesta, P., Winternitz, P., Harnad, J., Miller, Jr W., Pogosyan, G., Rodríguez, M.A. (eds.) Superintegrability in Classical and Quantum Systems, Montréal, CRM proceedings and Lecture Notes, AMS, vol. 37 (2004)
Tondo, G.: On the integrability of stationary and restricted flows of the KdV hierarchy. J. Phys. A 28, 5097–5115 (1995)
Tondo, G.: Generalized Lenard chains and multi-separability of the Smorodinsky–Winternitz system. J. Phys.: Conf. Ser. 482(012042), 10 (2014)
Tondo, G., Morosi, C.: Bi-Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation of variables. Rep. Math. Phys. 44, 255–266 (1999)
Tondo, G., Tempesta, P.: Haantjes structures for the Jacobi–Calogero model and the Benenti Systems. SIGMA 12(023), 18 (2016)
Tondo, G.: Haantjes Algebras of the Lagrange top. Theor. Math. Phys. 196, 1366–1379 (2018)
Tempesta, P., Tondo G.: A New family of higher-order Haantjes Tensors and a Generalized Haantjes Integrability Theorem. arXiv:1809.05908v3 (2021)
Acknowledgements
The research of Piergiulio Tempesta has been supported by the research project PGC2018-094898-B-I00, Ministerio de Ciencia, Innovación y Universidades and Agencia Estatal de Investigación, Spain, and by the Severo Ochoa Programme for Centres of Excellence in R&D (CEX2019-000904-S), Ministerio de Ciencia, Innovación y Universidades y Agencia Estatal de Investigación, Spain. Piergiulio Tempesta is a member of the Gruppo Nazionale di Fisica Matematica (GNFM) of INDAM.
Funding
Funding was provided by Ministerio de Economía, Industria y Competitividad, Gobierno de España (Grant Nos. FIS2015-63966, MINECO, Spain and SEV-2015-0554).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: “Modifications has been made in Page 6 and 30 of the article. Full information regarding the corrections made can be found in the erratum/correction for this article”.
Rights and permissions
About this article
Cite this article
Tempesta, P., Tondo, G. Haantjes algebras of classical integrable systems. Annali di Matematica 201, 57–90 (2022). https://doi.org/10.1007/s10231-021-01107-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10231-021-01107-4