Skip to main content
Log in

A characterization of weak Lp-eigenfunctions of the Laplacian on homogeneous trees

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this article, we characterize all eigenfunctions of the Laplacian on homogeneous trees, which are the Poisson transform of \(L^p\) functions defined on the boundary. Using the duality argument, we also proved the restriction theorem for the Helgason–Fourier transforms on a homogeneous tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boussejra, A., Sami, H.: Characterization of the \(L^p\)-range of the Poisson transform in hyperbolic spaces \(B({\mathbb{F}}^n)\). J. Lie Theory 12(1), 1–14 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Cowling, M.: Herz’s “principe de majoration” and the Kunze-Stein phenomenon, Harmonic analysis and number theory. In: CMS Conf. Proc., vol. 21, pp. 73–88. Amer. Math. Soc., Providence, RI (1997)

  3. Cowling, M., Meda, S., Setti, A.G.: An overview of harmonic analysis on the group of isometries of a homogeneous tree. Expo. Math. 16(5), 385–423 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Cowling, M., Setti, A.G.: The range of the Helgason-Fourier transformation on homogeneous trees. Bull. Aust. Math. Soc. 59(2), 237–246 (1999)

    Article  MathSciNet  Google Scholar 

  5. Figà-Talamanca, A., Nebbia, C.: Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees. London Math. Society Lecture Notes Series, vol. 162. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  6. Figà-Talamanca, A., Picardello, M.A.: Spherical functions and harmonic analysis on free groups. J. Funct. Anal. 47(3), 281–304 (1982)

    Article  MathSciNet  Google Scholar 

  7. Figà-Talamanca, A., Picardello, M.A.: Harmonic Analysis on Free Groups. Lecture Notes in Pure and Applied Mathematics, vol. 87. Dekker, New York (1983)

    MATH  Google Scholar 

  8. Grafakos, L.: Classical Fourier Analysis. Grad. Texts in Math., vol. 249. Springer, New York (2014)

    MATH  Google Scholar 

  9. Ionescu, A.D.: On the Poisson transform on symmetric spaces of real rank one. J. Funct. Anal. 174(2), 513–523 (2000)

    Article  MathSciNet  Google Scholar 

  10. Koichi, K.: A characterization of the \(L^2\)-range of the Poisson transform related to Strichartz conjecture on symmetric spaces of noncompact type. Adv. Math. 303, 464–501 (2016)

    Article  MathSciNet  Google Scholar 

  11. Korányi, A., Picardello, M.A.: Boundary behaviour of eigenfunctions of the Laplace operator on trees. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13(3), 389–399 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Kumar, P.: Fourier restriction theorem and characterization of weak \(L^2\) eigenfunctions of the Laplace–Beltrami operator. J. Funct. Anal. 266(9), 5584–5597 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kumar, P., Ray, S.K., Sarkar, R.P.: The role of restriction theorems in harmonic analysis on harmonic NA groups. J. Funct. Anal. 258(7), 2453–2482 (2010)

    Article  MathSciNet  Google Scholar 

  14. Lohoué, N., Rychener, Th: Some function spaces on symmetric spaces related to convolution operators. J. Funct. Anal. 55(2), 200–219 (1984)

    Article  MathSciNet  Google Scholar 

  15. Mantero, A.M., Zappa, A.: The Poisson transform and representations of a free group. J. Funct. Anal. 51(3), 372–399 (1983)

    Article  MathSciNet  Google Scholar 

  16. Pytlik, T.: Radial convolutors on free groups. Studia Math. 78(2), 179–183 (1984)

    Article  MathSciNet  Google Scholar 

  17. Sjögren, P.: Characterizations of Poisson integrals on symmetric spaces. Math. Scand. 49(2), 229–249 (1981)

    Article  MathSciNet  Google Scholar 

  18. Sjögren, P.: Asymptotic behaviour of generalized Poisson integrals in rank one symmetric spaces and in trees. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988) (1), 99–113 (1989)

  19. Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood–Paley Theory. Annals of Mathematics Studies, No. 63. Princeton University Press, University of Tokyo Press, Princeton, Tokyo (1970)

    Book  Google Scholar 

  20. Strichartz, R.S.: Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal. 87, 51–148 (1989)

    Article  MathSciNet  Google Scholar 

  21. Veca, A.: The Kunze–Stein phenomenon on the isometry group of a tree. Bull. Aust. Math. Soc. 65(1), 153–174 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the reviewer for some useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Second Author is supported by Institute fellowships of IIT Guwahati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Rano, S.K. A characterization of weak Lp-eigenfunctions of the Laplacian on homogeneous trees. Annali di Matematica 200, 721–736 (2021). https://doi.org/10.1007/s10231-020-01011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-01011-3

Keywords

Mathematics Subject Classification

Navigation