Skip to main content
Log in

An analogue of the squeezing function for projective maps

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In the spirit of Kobayashi’s applications of methods of invariant metrics to questions of projective geometry, we introduce a projective analogue of the complex squeezing function. Using Frankel’s work, we prove that for convex domains it stays uniformly bounded from below. In the case of strongly convex domains, we show that it tends to 1 at the boundary. This is applied to get a new proof of a projective analogue of the Wong–Rosay theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, F., Guan, Q., Zhang, L.: Some properties of squeezing functions on bounded domains. Pac. J. Math. 257, 319–341 (2012)

    Article  MathSciNet  Google Scholar 

  2. Deng, F., Guan, Q., Zhang, L.: Properties of squeezing functions and global transformations of bounded domains. Trans. Am. Math. Soc. 368, 2679–2696 (2016)

    Article  MathSciNet  Google Scholar 

  3. Diederich, K., Fornæss, J.E., Wold, E.F.: Exposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-type. J. Geom. Anal. 24, 2124–2134 (2014)

    Article  MathSciNet  Google Scholar 

  4. Efimov, A.M.: Extension of the Wong-Rosay theorem to the unbounded case. Sb. Math. 186, 967–976 (1995)

    Article  MathSciNet  Google Scholar 

  5. Fornæss, J.E., Wold, E.F.: An estimate for the squeezing function and estimates of invariant metrics. In: Bracci F., Byun J., Gaussier H., Hirachi K., Kim K.T., Shcherbina N. (eds) Complex Analysis and Geometry. Springer Proceedings in Mathematics & Statistics, vol. 144. Springer, Tokyo (2015)

  6. Frankel, S.: Applications of affine geometry to geometric function theory in several complex variables. Part I. Convergent rescalings and intrinsic quasi-isometric structure. In: Proceedings of Symposia in Pure Mathematics, vol. 52, Part 2, pp. 183–208 (1991)

  7. Hörmander, L.: Notions of Convexity. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  8. Jo, K.: A rigidity result for domains with a locally strictly convex point. Adv. Geom. 8, 315–328 (2008)

    Article  MathSciNet  Google Scholar 

  9. Kim, K.-T., Zhang, L.: On the uniform squeezing property of bounded convex domains in \({\mathbb{C}}^n\). Pac. J. Math. 282, 341–358 (2016)

    Article  Google Scholar 

  10. Kobayashi, S.: Projectively invariant distances for affine and projective structures. In: Differential Geometry, Banach Center Publications, vol. 12, pp. 127–152. PWN Polish Scientific Publishers, Warsaw (1984)

  11. Lempert, L.: Complex Geometry in convex domains. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Berkeley, California, 1986), pp. 759–765. American Mathematical Society, Providence, RI (1987)

  12. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. I. J. Differ. Geom. 68, 571–637 (2004)

    Article  MathSciNet  Google Scholar 

  13. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. II. J. Differ. Geom. 69, 163–216 (2005)

    Article  MathSciNet  Google Scholar 

  14. Nikolov, N., Andreev, L.: Boundary behavior of the squeezing functions of \({\mathbb{C}}\)-convex domains and plane domains. Int. J. Math. 28, 1750031 (2017)

    Article  MathSciNet  Google Scholar 

  15. Rosay, J.-P.: Sur une caractérisation de la boule parmi les domaines de \({\mathbb{C}}^n\) par son groupe d’automorphismes. Ann. Inst. Fourier 29, 91–97 (1979)

    Article  MathSciNet  Google Scholar 

  16. Socié-Méthou, E.: Caractérisation des ellipsoïdes par leurs groupes d’automorphismes. Ann. Sci. École Norm. Sup. 35, 537–548 (2002)

    Article  MathSciNet  Google Scholar 

  17. Wong, B.: Characterization of the unit ball in \({\mathbb{C}}^n\) by its automorphism group. Invent. Math. 41, 253–257 (1977)

    Article  MathSciNet  Google Scholar 

  18. Yeung, S.-K.: Geometry of domains with the uniform squeezing property. Adv. Math. 221, 547–569 (2009)

    Article  MathSciNet  Google Scholar 

  19. Yi, C.: Projective domains with non-compact automorphism groups. I. J. Korean Math. Soc. 45, 1221–1241 (2008)

    Article  MathSciNet  Google Scholar 

  20. Zimmer, A.: Characterizing the unit ball by its projective automorphism group. Geom. Topol. 20, 2397–2432 (2016)

    Article  MathSciNet  Google Scholar 

  21. Zimmer, A.: Characterizing strong pseudoconvexity, obstructions to biholomorphisms, and Lyapunov exponents. Math. Ann. 374, 1811–1844 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal J. Thomas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first named author is partially supported by the Bulgarian National Science Fund, Ministry of Education and Science of Bulgaria under contract DN 12/2. This paper was started while he was visiting the Paul Sabatier University, Toulouse, in November 2018 as a guest professor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolov, N., Thomas, P.J. An analogue of the squeezing function for projective maps. Annali di Matematica 199, 1885–1894 (2020). https://doi.org/10.1007/s10231-020-00947-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-00947-w

Keywords

Mathematics Subject Classification

Navigation