Advertisement

Fixed and moving limit cycles for Liénard equations

  • Armengol Gasull
  • Marco SabatiniEmail author
Article
  • 36 Downloads

Abstract

We consider a family of planar vector fields that writes as a Liénard system in suitable coordinates. It has a fixed closed invariant curve that often contains periodic orbits of the system. We prove a general result that gives the hyperbolicity of these periodic orbits, and we also study the coexistence of them with other periodic orbits. Our family contains the celebrated Wilson polynomial Liénard equation, as well as all polynomial Liénard systems having hyperelliptic limit cycles. As an illustrative example, we study in more detail a natural 1-parametric extension of Wilson example. It has at least two limit cycles, one of them fixed and algebraic and the other one moving with the parameter, presents a transcritical bifurcation of limit cycles and for a given parameter has a non-hyperbolic double algebraic limit cycle. In order to prove that for some values of the parameter the system has exactly two hyperbolic limit cycles, we use several suitable Dulac functions.

Keywords

Liénard equation Limit cycle Bifurcations Invariant algebraic curve 

Mathematics Subject Classification

Primary 34C07 Secondary 37C23 34C25 37C27 

Notes

Acknowledgements

The first author is partially supported by the MINECO/FEDER MTM2016-77278-P and AGAUR 2017-SGR-1617 Grants. The second author is partially supported by GNAMPA, Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni.

References

  1. 1.
    Abdelkader, M.A.: Relaxation oscillators with exact limit cycles. J. Math. Anal. Appl. 218, 308–312 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chavarriga, J., García, I.A., Llibre, J., Zoladek, H.: Invariant algebraic curves for the cubic Liénard system with linear damping. Bull. Sci. Math. 130, 428–441 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cherkas, L.A.: Conditions for a Liénard equation to have a centre. Differ. Equ. 12, 201–206 (1976)zbMATHGoogle Scholar
  4. 4.
    Cherkas, L.A.: Estimation of the number of limit cycles of autonomous systems. Differ. Equ. 13, 529–547 (1977)zbMATHGoogle Scholar
  5. 5.
    Cherkas, L.A.: Dulac function for polynomial autonomous systems on a plane. Differ. Equ. 33, 692–701 (1997)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Christopher, C.J., Lloyd, N.G., Pearson, J.M.: On a Cherkass method for centre conditions. Nonlinear World 2, 459–469 (1995)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Duff, G.F.D.: Limit-cycles and rotated vector fields. Ann. Math. 57, 15–31 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dumortier, F., Herssens, C.: Polynomial Liénard equations near infinity. J. Differ. Equ. 153, 1–29 (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Universitext. Springer, Berlin (2006)zbMATHGoogle Scholar
  10. 10.
    García, I.A., Giacomini, H., Giné, J.: Generalized nonlinear superposition principles for polynomial planar vector fields. J. Lie Theory 15, 89–104 (2005)MathSciNetzbMATHGoogle Scholar
  11. 11.
    García-Saldaña, J.D., Gasull, A., Giacomini, H.: Bifurcation values for a familiy of planar vector fields of degree five. Discrete Contin. Dyn. Syst. 35, 669–701 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gasull, A., Giacomini, H.: Some applications of the extended Bendixson–Dulac theorem. In: Ibáñez, S., Pérez del Río, J., Pumariño, A., Rodríguez, J. (eds.) Progress and Challenges in Dynamical Systems, pp. 233–252. Springer, Berlin (2013)CrossRefGoogle Scholar
  13. 13.
    Gasull, A., Giné, J., Grau, M.: Multiplicity of limit cycles and analytic m-solutions for planar differential systems. J. Differ. Equ. 240, 375–398 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Giacomini, H., Grau, M.: On the stability of limit cycles for planar differential systems. J. Differ. Equ. 213, 368–388 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Giacomini, H., Neukirch, S.: Number of limit cycles of the Liénard equation. Phys. Rev. E 56, 3809–3813 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Giacomini, H., Neukirch, S.: Algebraic approximations to bifurcation curves of limit cycles for the Liénard equation. Phys. Lett. A 244, 53–58 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Giné, J., Grau, M.: A note on: “Relaxation oscillators with exact limit cycles”. J. Math. Anal. Appl. 324, 739–745 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Graef, J.R.: On the generalized Liénard equation with negative damping. J. Differ. Equ. 12, 34–62 (1972)CrossRefzbMATHGoogle Scholar
  19. 19.
    Liu, C., Chen, G., Yang, J.: On the hyperelliptic limit cycles of Liénard systems. Nonlinearity 25, 1601–1611 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lloyd, N.G.: A note on the number of limit cycles in certain two-dimensional systems. J. Lond. Math. Soc. 20, 277–286 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Perko, L.M.: Global families of limit cycles of planar analytic systems. Trans. Am. Math. Soc. 322, 627–656 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Perko, L.M.: Rotated vector fields. J. Differ. Equ. 103, 127–145 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Perko, L.M.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7, Third edn. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  24. 24.
    Sotomayor, J.: Curvas definidas por Equaçoes Diferenciais no Plano. Instituto de Matemática Pura e Aplicada, Rio de Janeiro (1981)Google Scholar
  25. 25.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (1980)CrossRefzbMATHGoogle Scholar
  26. 26.
    Sturmfels, B.: Solving Systems of Polynomial Equations, CBMS Regional Conference Series Mathematics, vol. 97. American Mathematical Society, Providence, RI (2002) (Published for the Conference Board of the Mathematical Sciences, Washington, DC)Google Scholar
  27. 27.
    Wilson, J.C.: Algebraic periodic solutions of \(\ddot{x}+f(x)\dot{x}+g(x)=0\). Contrib. Differ. Equ. 3, 1–20 (1964)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Yamato, K.: An effective method of counting the number of limit cycles. Nagoya Math. J. 76, 35–114 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yan-Qian, Y., et al.: Theory of Limit Cycles. Translations of Mathematical Monographs, vol. 66. American Mathematical Society, Providence, RI (1986)Google Scholar
  30. 30.
    Zhang, Z.F., et al.: Qualitative theory of differential equations. Translations of Mathematical Monographs, vol. 101. American Mathematical Society, Providence, RI (1992)Google Scholar
  31. 31.
    Zoladek, H.: Algebraic invariant curves for the Liénard equation. Trans. Am. Math. Soc. 350, 1681–1701 (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dep. de MatemàtiquesUniv. Autònoma de BarcelonaBellaterra, BarcelonaSpain
  2. 2.Dip. di MatematicaUniv. di TrentoPovoItaly

Personalised recommendations