Annali di Matematica Pura ed Applicata

, Volume 192, Issue 3, pp 423–445 | Cite as

Integrable discrete hungry systems and their related matrix eigenvalues

  • Akiko Fukuda
  • Emiko Ishiwata
  • Yusaku Yamamoto
  • Masashi IwasakiEmail author
  • Yoshimasa Nakamura


Recently, some of the authors designed an algorithm, named the dhLV algorithm, for computing complex eigenvalues of a certain class of band matrix. The recursion formula of the dhLV algorithm is based on the discrete hungry Lotka–Volterra (dhLV) system, which is an integrable system. One of the authors has proposed an algorithm, named the multiple dqd algorithm, for computing eigenvalues of a totally nonnegative (TN) band matrix. In this paper, by introducing a theorem on matrix eigenvalues, we first show that the eigenvalues of a TN matrix are also computable by the dhLV algorithm. We next clarify the asymptotic behavior of the discrete hungry Toda (dhToda) equation, which is also an integrable system, and show that a similarity transformation for a TN matrix is given through the dhToda equation. Then, by combining these properties of the dhToda equation, we design a new algorithm, named the dhToda algorithm, for computing eigenvalues of a TN matrix. We also describe the close relationship among the above three algorithms and give numerical examples.


Discrete hungry Lotka–Volterra system Discrete hungry Toda equation Matrix eigenvalue Similarity transformation 

Mathematics Subject Classification (2000)

37K10 37K40 65F15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ando T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bogoyavlensky O.I.: Integrable discretizations of the KdV equation. Phys. Lett. A 134, 34–38 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brenti F.: Combinatrics and total positivity. J. Combin. Theory Ser. A 71, 175–218 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chu M.T.: Linear algebra algorithm as dynamical systems. Acta Numer. 17, 1–86 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fukuda A., Ishiwata E., Iwasaki M., Nakamura Y.: The discrete hungry Lotka-Volterra system and a new algorithm for computing matrix eigenvalues. Inverse Probl. 25, 015007 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gantmacher F., Krein M.: Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, revised edition. AMS Chelsea, Providence (2002)Google Scholar
  7. 7.
    Gasca, M., Micchelli, C.A. (eds.): Total Positivity and Its Applications, Math. Appl. 359. Kluwer, Dordrecht (1996)Google Scholar
  8. 8.
    Geist G.A., Howell G.W., Watkins D.S.: The BR eigenvalue algorithm. SIAM J. Mat. Anal. Appl. 20, 1083–1098 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hirota R.: Discrete analogue of a generalized Toda equation. J. Phys. Soc. Jpn. 50, 3785–3791 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hirota R.: Conserved quantities of a random-time Toda equation. J. Phys. Soc. Jpn. 66, 283–284 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Itoh Y.: Integrals of a Lotka-Volterra system of odd number of variables. Prog. Theor. Phys. 78, 507–510 (1987)CrossRefGoogle Scholar
  12. 12.
    Iwasaki M., Nakamura Y.: On the convergence of a solution of the discrete Lotka-Volterra system. Inverse Probl. 18, 1569–1578 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Iwasaki M., Nakamura Y.: An application of the discrete Lotka-Volterra system with variable step-size to singular value computation. Inverse Probl. 20, 553–563 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Iwasaki M., Nakamura Y.: Accurate computation of singular values in terms of shifted integrable schemes. Jpn. J. Indust. Appl. Math. 23, 239–259 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Karlin S.: Total Positivity, vol. I. Stanford University Press, Stanford (1968)Google Scholar
  16. 16.
    Koev P.: Accurate eigenvalue and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 27, 1–23 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
  18. 18.
    Nagai A., Tokihiro T., Satsuma J.: The Toda molecule equation and the ε-algorithm. Math. Comp. 67–224, 1565–1575 (1998)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nakamura Y.: Calculating Laplace transforms in terms of the Toda molecule. SIAM J. Sci. Comput. 20, 306–317 (1999)zbMATHCrossRefGoogle Scholar
  20. 20.
    Nakamura Y., Mukaihira A.: Dynamics of the finite Toda molecule over finite fields and a decoding algorithm. Phys. Lett. A 249, 295–302 (1998)CrossRefGoogle Scholar
  21. 21.
    Nakamura, Y. (ed.): Applied Integrable Systems (in Japanese). Shokabo, Tokyo (2000)Google Scholar
  22. 22.
    Parlett B.N.: The new qd algorithms. Acta Numer. 4, 459–491 (1995)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pinkus A.: Totally Positive Matrices. Cambridge University Press, New York (2010)zbMATHGoogle Scholar
  24. 24.
    Takahashi D., Matsukidaira J.: Box and ball system with a carrier and ultradiscrete modified KdV equation. J. Phys. A 30–21, L733–L739 (1997)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tokihiro T., Nagai A., Satsuma J.: Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization. Inverse Probl. 15, 1639–1662 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Rutishauser H.: Ein infinitesimales Analogon zum Quotienten-Differenzen-Algorithmus. Arch. Math. 5, 132–137 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Rutishauser H.: Solution of eigenvalue problems with the LR transformation. Nat. Bur. Stand. Appl. Math. Ser. 49, 47–81 (1958)MathSciNetGoogle Scholar
  28. 28.
    Rutishauser, H.: Lectures on Numerical Mathematics, Birkhäuser, Boston (1990)Google Scholar
  29. 29.
    Symes W.W.: The QR algorithm and scattering for the finite nonperiodic Toda lattice. Physica D 4, 275–280 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Tsujimoto S., Hirota R., Oishi S.: An extension and discretization of Volterra equation I (in Japanese). Tech. Rep. Proc. IEICE NLP 92–90, 1–3 (1993)Google Scholar
  31. 31.
    Watkins D.S.: Product eigenvalue problems. SIAM Rev. 47, 3–40 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Yamamoto Y., Fukaya T.: Differential qd algorithm for totally nonnegative band matrices: convergence properties and error analysis. JSIAM Lett. 1, 56–59 (2009)MathSciNetGoogle Scholar
  33. 33.
    Yamazaki S.: On the system of non-linear differential equations ẏk = y k(y k+1y k-1). J. Phys. A: Math. Gen. 20, 6237–6241 (1987)zbMATHCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2011

Authors and Affiliations

  • Akiko Fukuda
    • 1
  • Emiko Ishiwata
    • 1
  • Yusaku Yamamoto
    • 2
  • Masashi Iwasaki
    • 3
    Email author
  • Yoshimasa Nakamura
    • 4
  1. 1.Department of Mathematical Information ScienceTokyo University of ScienceTokyoJapan
  2. 2.Graduate School of System InformaticsKobe UniversityKobeJapan
  3. 3.Department of Informatics and Environmental ScienceKyoto Prefectural UniversityKyotoJapan
  4. 4.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations