Abstract
This paper is devoted to the study of an elliptic system with singular coefficients. Existence and multiplicity results at resonance are obtained via variational methods.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Alves C.O., de Morais Filho D.C., Souto M.A.S.: On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Anal. 42, 771–787 (2000)
Ambrosetti A., Rabinowitz P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
Bouchekif, M., Nasri, Y.: Solutions for semilinear elliptic systems with critical Sobolev exponent and Hardy potential. Can. J. Math. (2008, to appear)
Brézis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36, 437–477 (1983)
Caffarelli L., Kohn R., Nirenberg L.: First order interpolation inequality with weights. Compos. Math. 53, 259–275 (1984)
Capozzi A., Fortunato D., Palmieri G.: An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Nonlineaire 2, 463–470 (1985)
Catrina F., Wang Z.Q.: On the Caffarelli–Kohn–Nirenberg inequality: sharp constants existence (and nonexistence) and symmetry of extremal functions. Comm. Pure Appl. Math. 54, 229–258 (2001)
Cerami G., Fortunato D., Struwe M.: Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré Anal. Nonlineaire 1, 341–350 (1984)
Chou K.S., Chu C.W.: On the best constant for a weighted Sobolev–Hardy inequality. J. Lond. Math. Soc. 2, 137–151 (1993)
Cao D., Han P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 205, 521–537 (2004)
Costa D.G., Magalhăes C.A.: A variational approch to subquadratic perturbations of elliptic systems. J. Differ. Equ. 111, 103–122 (1994)
de Figueiredo, D.G.: Semilinear elliptic systems. In: Ambrosetti, A., Chang, K.C., Ekland, I. (eds.) Nonlinear Functional Analysis and Applications to Differential Equations, pp 122–152. World Scientific, London (1998)
Dautray R., Lions P.J.: Mathematical Analysis and Numerical methods for science and technology. Physical origins and classical methods, vol. 1. Springer, Berlin (1990)
Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)
Felli V., Schneider M.: Perturbations results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type. J. Differ. Equ. 191, 121–142 (2003)
Ferrero A., Gazzola F.: Existence of solutions for singular critical growth semilinear elliptic equations. J. Differ. Equ. 177, 494–522 (2001)
Ferrero A., Ruf B.: Lower order perturbations of critical growth nonlinearities in semilinear elliptic PDE’s. Adv. Differ. Equ. 2, 555–572 (1997)
Kang D.: On elliptic problems with critical weighted Sobolev–Hardy exponents. Nonlinear Anal. 66, 1037–1050 (2007)
Miyagaki O.H., Rodrigues R.S.: On positive solutions for a class of singular quasilinear elliptic systems. J. Math. Anal. Appl. 334, 818–833 (2007)
Xuan B., Su S., Yan Y.: Existence results for Brezis–Nirenberg problems with Hardy potential and singular coefficients. Nonlinear Anal. 67, 2091–2106 (2007)
Zuluaga M.: Nonzero solutions of a nonlinear elliptic system at resonance. Nonlinear Anal. 31, 445–454 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bouchekif, M., Nasri, Y. On a singular elliptic system at resonance. Annali di Matematica 189, 227–240 (2010). https://doi.org/10.1007/s10231-009-0106-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10231-009-0106-9