Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Annali di Matematica Pura ed Applicata
  3. Article

Diffractive behavior of the wave equation in periodic media: weak convergence analysis

  • Open Access
  • Published: 13 September 2008
  • volume 188, pages 561–589 (2009)
Download PDF

You have full access to this open access article

Annali di Matematica Pura ed Applicata Aims and scope Submit manuscript
Diffractive behavior of the wave equation in periodic media: weak convergence analysis
Download PDF
  • Grégoire Allaire1,
  • Mariapia Palombaro2 &
  • Jeffrey Rauch3 
  • 486 Accesses

  • 23 Citations

  • Explore all metrics

  • Cite this article

Abstract

We study the homogenization and singular perturbation of the wave equation in a periodic media for long times of the order of the inverse of the period. We consider initial data that are Bloch wave packets, i.e., that are the product of a fast oscillating Bloch wave and of a smooth envelope function. We prove that the solution is approximately equal to two waves propagating in opposite directions at a high group velocity with envelope functions which obey a Schrödinger type equation. Our analysis extends the usual WKB approximation by adding a dispersive, or diffractive, effect due to the non uniformity of the group velocity which yields the dispersion tensor of the homogenized Schrödinger equation.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Allaire G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allaire G.: Dispersive limits in the homogenization of the wave equation. Annales de la Faculté des Sciences de Toulouse XII, 415–431 (2003)

    MathSciNet  Google Scholar 

  3. Allaire, G., Amar, M.: Boundary layer tails in periodic homogenization, ESAIM COCV 4, pp. 209–243 (1999)

  4. Allaire G., Capdeboscq Y., Piatnistki A., Siess V., Vanninathan M.: Homogenization of periodic systems with large potentials. Archive Rat. Mech. Anal. 174, 179–220 (2004)

    Article  MATH  Google Scholar 

  5. Allaire, G., Palombaro, M., Rauch, J.: Diffractive geometric optics for Bloch wave packets, preprint

  6. Allaire G., Piatnistki A.: Homogenization of the Schrödinger equation and effective mass theorems. Comm. Math Phys. 258, 1–22 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bamberger A., Engquist B., Halpern L., Joly P.: Parabolic wave equation approximations in heterogenous media. SIAM J. Appl. Math. 48(1), 99–128 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benisty, H., Weisbuch, C.: Photonic crystals. In: Wolf, E. (ed.) Progress in optics, vol. 49, pp. 177–313. Elsevier, Amsterdam (2006)

  9. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978)

  10. Brahim-Otsmane S., Francfort G., Murat F.: Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71(9), 197–231 (1992)

    MATH  MathSciNet  Google Scholar 

  11. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam (1973)

  12. Conca C., Planchard J., Vanninathan M.: Fluids and periodic structures, RMA, vol. 38. Wiley & Masson, Paris (1995)

    Google Scholar 

  13. Conca, C., Orive, R., Vanninathan, M.: On Burnett coefficients in strongly periodic media (preprint)

  14. Donnat, P., Joly, J.-L., Metivier, G., Rauch, J.: Diffractive nonlinear geometric optics, Séminaire sur les Equations aux Dérivées Partielles, 1995–1996, Exp. No. XVII, p. 25. Ecole Polytechnique, Palaiseau (1996)

  15. Donnat, P., Rauch, J.: Modeling the dispersion of light, Singularities and oscillations (Minneapolis, MN, 1994/1995), IMA Vol. Math. Appl., vol. 91, pp. 17–35. Springer, New York (1997)

  16. Donnat P., Rauch J.: Dispersive nonlinear geometric optics. J. Math. Phys. 38(3), 1484–1523 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Francfort G., Murat F.: Oscillations and energy densities in the wave equation. Comm. Partial Differ. Equ. 17, 1785–1865 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gérard P.: Microlocal defect measures. Comm. Partial Differ. Equ. 16, 1761–1794 (1991)

    Article  MATH  Google Scholar 

  19. Gérard P., Markowich P., Mauser N., Poupaud F.: Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50(4), 323–379 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kato T.: Perturbation theory for linear operators. Springer, Berlin (1966)

    MATH  Google Scholar 

  21. Kuchment, P.: Floquet theory for partial differential equations, Operator Theory: Advances and Applications, vol. 60. Birkhäuser Verlag, Basel (1993)

  22. Kuchment, P.: The mathematics of photonic crystals, Mathematical modeling in optical science, Frontiers Appl. Math., vol. 22, pp. 207–272. SIAM, Philadelphia (2001)

  23. Leontovich M., Fock V.: Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the method of parabolic equation. Acad. Sci. USSR. J. Phys. 10, 13–24 (1946)

    MathSciNet  Google Scholar 

  24. de Martin Sterke C., Sipe J.: Envelope-function approach for the electrodynamics of nonlinear periodic structures. Phys. Rev. A 38, 5149–5165 (1998)

    Article  Google Scholar 

  25. Marusic-Paloka E., Piatnitski A.: Homogenization of nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection. J. Lond. Math. Soc. 72(2), 391–409 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nguetseng G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Reed M., Simon B.: Methods of Modern Mathematical Physics. Academic Press, New York (1978)

    MATH  Google Scholar 

  28. Santosa F., Symes W.: A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51, 984–1005 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sipe J., Winful H.: Nonlinear Schrödinger solitons in a periodic structure. Opt. Lett. 13, 132–133 (1988)

    Article  Google Scholar 

  30. Tappert, F.: The parabolic approximation method, in Wave propagation and underwater acoustics (Workshop, Mystic, Conn., 1974). Lecture Notes in Physics, vol. 70, pp. 224–287. Springer, Berlin (1977)

  31. Tartar L.: H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinburgh 115A, 193–230 (1990)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Centre de Mathématiques Appliquées, École Polytechnique, 91128, Palaiseau, France

    Grégoire Allaire

  2. Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22-26, 04103, Leipzig, Germany

    Mariapia Palombaro

  3. Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA

    Jeffrey Rauch

Authors
  1. Grégoire Allaire
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Mariapia Palombaro
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jeffrey Rauch
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Grégoire Allaire.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Allaire, G., Palombaro, M. & Rauch, J. Diffractive behavior of the wave equation in periodic media: weak convergence analysis. Annali di Matematica 188, 561–589 (2009). https://doi.org/10.1007/s10231-008-0089-y

Download citation

  • Received: 23 November 2007

  • Published: 13 September 2008

  • Issue Date: September 2009

  • DOI: https://doi.org/10.1007/s10231-008-0089-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Homogenization
  • Bloch waves
  • Diffractive geometric optics

Mathematics Subject Classification (2000)

  • 35B27
  • 35J10

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature