Abstract
We study a quasilinear elliptic problem
with nonhomogeneous principal part φ. Under the hypothesis f(x,t)= o(φ(t)t) at t= 0 and ∞, the existence of multiple positive solutions is proved by using the variational arguments in the Orlicz–Sobolev spaces.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)
Brezis, H., Nirenberg, L.: H 1 versus C 1 local minimizers. C. R. Acad. Sci. Paris, Sér. I Math. 317, 465–472 (1993)
Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78. Springer-Verlag, Berlin (1989)
Fuchs, M., Li, G.: Variational inequalities for energy functionals with nonstandard growth conditions. Abstr. Appl. Anal. 3, 41–64 (1998)
Fuchs, M., Osmolovski, V.: Variational integrals on Orlicz–Sobolev spaces. Z. Anal. Anwendungen 17, 393–415 (1998)
Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on ℝN, submitted for publication.
Fukagai, N., Narukawa, K.: Nonlinear eigenvalue problem for a model equation of an elastic surface. Hiroshima Math. J. 25, 19–41 (1995)
Fukagai, N., Narukawa, K.: Multiple positive solutions of nonlinear eigenvalue problems associated to a class of p-Laplacian like operators. Commun. Contemp. Math. 5, 737–759 (2003)
García Azorero, J.P., Peral Alonso, I., Manfredi, J.J.: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2, 385–404 (2000)
García-Huidobro, M., Le, V.K., Manásevich, R., Schmitt, K.: On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting. Nonlinear Diff. Eqns. Appl. 6, 207–225 (1999)
Ghoussoub, N., Preiss, D.: A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Linéaire 6, 321–330 (1989)
Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879–902 (1989)
Krasnosel'skiĭ, M.A., Rutickiĭ, Ja.B.: Convex Functions and Orlicz Spaces (Translated from the first Russian), P. Noordhoff Ltd., Groningen (1961)
Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)
Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Comm. Partial Diff. Eqns. 16, 311–361 (1991)
Struwe, M.: Variational Methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34, 3rd edn. Springer-Verlag, Berlin (2000)
Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Comm. Partial Diff. Eqns. 8, 773–817 (1983)
Author information
Authors and Affiliations
Additional information
Mathematics Subject Classification (2000) 35J20; 35J25; 35J70; 47J10; 47J30
Rights and permissions
About this article
Cite this article
Fukagai, N., Narukawa, K. On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Annali di Matematica 186, 539–564 (2007). https://doi.org/10.1007/s10231-006-0018-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10231-006-0018-x